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PREFACE

This document was prepared for the USAF Space Division Deputy
for Technology (YL) by personnel of the Jet Propulsion Laboratory (JPL).
An attempt has been made to summarize and document the spacecraft autonomy
approaches that JPL utilized in their planetary spacecraft designs over the
past decade, and to reorient these approaches to the extent necessary to
make them applicable to military satellites.

The reader will find the resulting material to be a useful
collectior of autonomy definitions, goals, approaches, guidelines, examples,
and lessons learned. Since autonomv practice does not lend itself to
display in the form of tabular data and curves, one will not find
traditional Mil-Spec handbook-type data.

This Issue I version is being distributed for the immediate
use of the community as well as for review and comment from potential
users, The current expectation is to revise and update this material
during FY'83, hence it is important that users provide comments and
suggestions to Space Division (Attn: YLXS), or to the Jet Propulsion
Laboratory (Atta: Manager, Autonomous Spacecraft Program, 180-202)
as soon as possible.
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Definitions:
Algorithm

Attribute

Automatic
Process

Autonomy

Autonomous

Process

Control
Structure

Endurability

Fatiure

Fault

Ground Segment

Health

The description in step-by-step detail of the logical
process required to perform a function.

A system design characteristic that wmay be supported
by system and subsystem level architecture and
technical implementation techniques. Comaon Systew
attributes are survivability, reliability,
maintainability, etc.

A process that is controlled in repetitive fashion
until disturbed or modified by external inputs.

The ability of a spacecraft to meet mission
performance requirements without human interveution
or ground support for a specified period of tiwe.
This may include routine operations as well as the
re-establ ishment of normal operations after the
occurrence of pre-defined faults.

A process that incorporates control structure logic
to assess the appropriateness of ite automatic
functions from internal and/or external sensory
inputs and modify the automatic processes as needed.

A series of three actions used to implement control
of a process. The actions are: 1) sense the state
of an internal or external quantity, 2) direct the
initiation of an appropriate response by the systems,
and 3) act to isclement the response.

The ability of a system to maintain a required level
of performance throughout the conflict spectrum.

A fault requiring hardware repair, replacement, or
software reprogramming for correction.

A fault is a disruption of the specific 1ogicel dehavior
of a system. Tnhe disruption may be transient in
nature or persist after occurrence.

The portion of a total mission system implemented by
ground, Ssea-borne, or air-borne resources. Ground
segment resources may operated in fixed mode, mobile
mode, or both.

The operation integrity of a system as affected
by faults.

I-11




Level - This term is used in two separate senses in this
document: (1) The level of autonomy of a spacecraft
is defined in JPL Document 7030-1 on a scale of 0 to
10. Autonomy will always be mentioned with the word
level when it is used in this context. (2) The
hi~rarchical structure of the system development
process is referred to as a series of leve s.

Methodolcgy - A body of methods, rules, and postulates employed by
a discipline as we:l as the analysis of the
principles or procedures of inquiry of that
discipline.

Mission Phase - A portion of mission characterized by fulfillment of
a distinct mission goal. Examples are prelaunch,
on-orbit initialization and checkout, normal
operations, and end-of-life.

Navigation - Knowledge and control of the spacecraft trajectory.
A navigation system is responsible for satisfying
mission requirements for orbit determination,
trajectory propagation, and maneuver planning. The
first two functions are necessary for ephemeris
maintenance. Stationkeeping or orbit maintenance
may also require these to support the generation of
required maneuver plans and parameters. Navigation
may utilize trajectory knowledge to predict related
events such as eclipses or occultations.

Operating Mode - A specific hardware/software configuration of a
spacecraft system or subsystem. A spacecraft will
typically have an operating mode for performing orbit
adjust velocity changes that is separate from other
payload related operating modes.

Routine - The software implementation of an algorithm or one of
its logical parts.

Space Segment - The portion of a total mission system implemented by
space-based resources.

Validation - A set of analytical, operational test, and simulation
procedures by which hardware and software functions,
performance, and interfaces are evaluated for
compliance with mission and system design requirements.

Welfare - The operational integrity of a system maintained

by nominal periodic control actions, such
as calibrations, software updates, etc.

I-12
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PART 1
INTRODUCTION

SECTION 1
SCOPE AND PURPOSE

This Handbook provides reference material pertaining tc the
design and validation of autonomous spacecraft systems. The goal is to
present in one place a compendium of rules, considerations, and approaches
to spacecraft autonony that will be useful to Air Force and Industrial
personnel involved in project management, design, implementation, test,
and operations of military space systems. The scope of the content ranges
from mission level requirements definition to examples of techniques used to
implement subsystem level autonomous control.

Autonomy is the ability of a spacecraft to meet mission
performance requirements, for a specified period of time, without exterral
support. There are four major functional areas that may be considered as
part of spacecraft autonomy. These are:

(1) Health and Welfare Maintenance

(2) Navigation

13) Command Sequence Generation

(4) Payload Data Processing

The first two functiors are similar in nature for most missions.
The last two ar~ highly dependent upon mission and payload requiremerts. A
complex mission may be highly dependent upon ground support of the payload
while still being able to benefit from autonomous design for the first two.

This issue of the Handbook will address spacecraft health
and welfare maintenance functions and navigation functions. Payload or

mission interface issues that do arise are handled in as generic a manner
as possible.
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SECTION 2
CONSTRAINTS ANU ASSUMPTIONS

A set of design and implementation goals for autonomy may be
found in "Goals for Air Force Autonomous Spacecraft“, SD-TR-81-72, 31
March 1981. The Handbook is consistent with these goals and is intended
to provide a tool for implementation of the goals by projects interested
in specific mission applications.

The content of this issue of the Handbook is based primarily
upon planetary spacecraft project experience. The impact of autonomy
upon the design and validation processes has been assessed by examination
of existing military spacecraft designs for their current degree of
operational autonomy. This impact for the Defense Satellite Communications
System (DSCS) IIl Satellite System is discussed in “"Assessment of Autonomcus
Options for the DSCS III Satellite System,“ SD-TR-81-87, 6 August 1981.
It is found that a high level of spacecraft health and welfare autonowy
can be achieved through implementation of existing technology. Advances
in technology are required to reduce the overall impact of added autonomy
on mass and power. Technology improvements will also have a great
impact upon spacecraft control autherity architecture.

The application of this Handbook does not depend upon
optimizing spacecraft system architecture to support autonomous operation.
It does, however, offer information that can be applied to increase tie
autonomy of an existing design or support the design of a new autonomous
spacecraft system.

Faults due to hostile action are not explicitly addressed in
the Handbook. The emphasis here is to enhance endurability of the
spacecraft in the presence of faults that might occur in normal operation.
Some faults caused by hostile action may be properly corrected by the
same fault management responses that protect against faults occurring in
normal operations.

The material presented in this Handbook is limited in
scope to the space vehicle system and subsystem levels of detail. Some
references to specific piece parts occur, but subsystems are charucterized
by their next lowest level subassemblies. No information is included to
support design or validation below the subassembly level.

I-15



SECTION 3
HANDBOOK DESCRIPTION AND USE

The Handbook is organizad into separate parts that discuss
specification of autonomy, design methodology, validation methodology,
and a summary of important points learned through prior experience and
specific implementation approaches. Material that expands upon specific
topics or provides supporting rationale is included as appendices.

The material provided in the Handbook covers a wide scope
of detail and interest. Figure I-1 presents an organization of the
Handbook content by topic of interest (Specification, Design, Validation)
and increasing level of detail. Used along with the Table of Contents
it should allow the user to locate specific material of interest and
obtain a better understanding of the logical organization of the Handbook.

Part II of the Handbook discusses the generation of autonomy
specifications. It does not present a “boilerplate” specification example
of autonomy. Rather, it presents a rationale for specification of autcaomy
at all levels of the Space System and addresses specific requirements at
Space System Specification and Space Vehicle Specification levels. Each
level of specification is addressed with a section of explanation and
rationale, a section specifying candidate requirements, and a section
identifying portions of the specification format where autonomy require-
ments are appropriate. The specification formats were derived from
References 1 and 2 and are in compliance with MIL-STD-483 and M!L-STD-490.
The user is expected to review the sample requirements and select a set
that is relevart to his mission needs.

Part III addresses the design methodology for autonomous
spacecraft at the spacecraft system and subsystem levels. Section 1
and its subsections address the process of identifying functions for
autonomous implementation. A procedure for selection of autonomous
functions is presented, along with identification of critical issues and
the impact upon program management procedure. Section 2 presents
detailed topics on autonomous design at the spacecraft system level,
Architecture and control algorithms, navigation subsystem design, and
design requirements imposed by validation and test considerations are the
principal points of the section. Section 3 addresses the autonomous
welfare maintenance and autonomous fault management characteristics of
typical spacecraft subsystems.

Part IV characterizes the impact of autonomy on Validation
Methodology. The validation process, generation of validation requirements,
and specific critical issues zrz discussed. Some implementation techniques
that rel:te to new requirements generated by autonomy are presented in
Section 4.

1-16
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Part V is intended to condense previous flight project
experience with autonamy into a set of topical "lessons". These lessons
reflect both positive and negative views of specific design, validation,
and operating techniques.

Appendix A contains a discussion of JPL flight experience
with autonomy on the Viking Orbiter and Voyager spacecraft. Autonomy
implementation is detailed and design details are provided for spacecraft
of both programs.

Appendix B contains specific examples of autonamous control
and fauit management algorithms for generic spacecraft subsystems. The
algorithms were generated without regard for application on a specific project.

Appendix C contains selected algorithms actually implemented
in the Viking and Voyager flight projects. Requirements and implementation
logic are explained in detail, and any experience with operation of the
algorithms is noted.

Appendix D contains the study reports resulting from consideratior
of centralized, decentralized and hybrid architectures for control and
data proncessing capabilities.

1-18
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SECTION 4
AUTONOMY ISSUES

The implementation of spacecraft autonomy raises a number of
issues that should be examined in the context of the requirements of the
individual missfons. The Handbook provides material that directly relates
to these issues or which supports the mission unique analysis needed to
resolve these issues. Specific issues of concern are:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

\8)

(9)

(10)

Selection of appropriate goals and requirements fcr
implementzzion of autonony. (Part II, Section 1)

Specification of requiremerts for design, validation,
and 1?p1ementation of autonimy. (Part II, Sections z
and 3

Impact of autonomy implementation on program management.
(Part III, Section 1.2)

Methodology differences between the implementation of autonomy
in new or in existing systems. (Part III, Section 1.2)

Centralized or decentralized spacecraft control architecture.
(Part III, Section 2.1)

Allocation of autonamous control among systems and subsystems
and the degree of executive control required (Part III,
Sections 1.1, 2.1, and 3)

Selection and prioritization of a set of functions as candidates
for autonomous operation. (Part III, Section 1.1)

The degree and nature of ground support required.
(Part 11, Section 1.4)

The role of autonomy in reducing operating costs. (Fart II,
Section 1.2, 1.3)

The use of redundancy at system and subsystem levels.
(Part II, Section 2.1.2)
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PART 11
GENERATION OF AUTONOMY SPECIFICATIONS

SECTION 1
AUTONOMY AS A TOP LEVEL REQUIREMENT

1.1 NEED FOR TOP LEVEL REQUIREMENTS

The potential impact of a. tonomy on cost, risk, and operations
makes it essential to consider the required degree of autonomy at the highest
Tevels of concept definition and mission definition. The impact of autonomy
on a program will vary greatly with the degree of autonomy required of the
mission and the complexity and cost of achieving all mission requirements.

A set of autoromy requirements for a program may be formulated by analyzing
a set of generic autonomy goals, selecting a specific subset compatible with
the mission, and prioritizing them with other mission requirements.

Several factors influence the importance of this high level
selection of autonomy requirements.

(1) Autonomous operating features will be implemented at much
Tower levels of the deveiopment process, “ut their design may
be undisciplined and unproductive unless guided by higher
level requirements.

(2) A program whose space segment is maraged by an agency separate
from those responsible for ground control and user sejments
needs high level visibility of autonomy requirements to ensure
compatible implementation and justify increased front end costs.

(3) The cost impacts of autonomy are moire visible when they are
directly traceable to major program policies or requirements.

(4) Potential operational benefits of autonomy may be lost or
lessened by ad hoc implementation at low levels of design.

(5) Autonomy is closely related with other high level attributes
that produce major ~equirements. Specifically, it involves
reliability, survivability, endurability, and operability.

(6) Autonomy is a new attribute with significant impacts on
program management and contractual relationships.
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1.2 BENEFITS OF AUTONUMY TO A MISSION

A specific mission may have a top level survivability/autonomy
requirement, or may benefit from addition of autonomous operdating features
to complement any or all of its ground related functions. These functions
fall into the four classes of health and welfare maintenance, navigation,
command sequence generation, and payload data processing. The feasibility
and cost/benefit ratio of making these classes autonomous is highly dependent
upon the nature of the individual mission. Health and welfare maintenance
is the area that has the most common application to all missions and can provide
a number of benefits.

(1) Provide insurance that this spacecraft will perform its mission
function in times of critical need.

(2) Provide increased endurability of a spacecraft in the absence
of ground support.

(3) Reduce the need for on-orbit or ground stored spare
spacecraft.

(4) Reduce the impact of ground support loss on user operations.
(5) Reduce ground support load for normal operations,

(6) Protect the spacecraft from the consequences of cascading
faults.

{7) Decrease personnel and functional requirements on mobile
ground support facilities.

(8) Provide increased reliability for missions with limited
availability or little payload requirement for ground
support.

(9) Provide enhanced telemetry data collection capability for
periods when ground support is not available.

(11) Protect user resources by providing a "fail operational” mode
for many categories of faults.

(11) Simplify anomaly investigation by limiting the impact of
faults and recording fault indications and response.
1.3 AUTONOMY IN THE SPACE SYSTEM LIFE CYCLE
System life cycle terminology considered in this Handbook is

shown in Table II-1. Activities and major products affected by autcnomy
are also shown. The life cycle may be related to a new project requiring



Table II-1. Space System Life Cvcle, Activities and Products

SYSTEM LIFE PHASE

ACTIVITIES AND PRODUCTS

CONCEPT DEFINITION

' MISSION DEFINITION

ACQUISITION

OPERATIONS

MISSION AUTONOMY DEFINITION

SPACE SEGMENT SPECIFICATION
SPACE VEHICLE SPECIFICATION
REQUEST FOR PROPOSALS

FUNCTIONAL REQUIREMENTS AND
SPECIFICATIONS

SPACE SEGMENT OTHER SEGMENTS
VEHICLE INTERFACES

SUBSYSTEMS
INTERFACES

PRELAUNCH
ON-ORBIT TESTING
MISSION GPERAIONS
BEGINNING OF LIFE

#

END OF LIFE




autonomy from its inception or to a product improvement block of spacecraft
for an existing program. These two separate program circumstances are
considered to affect the scope and context of each life cycle phase, but
not the basic existence of the phases. The effect of both cases on design
methodology is discussed in Topic 1.3.5 of Part III.

1.3.1 Concept Definition Phase

The appropriate time to consider the nzed for autonomous payload
operating features and their impact on autonomous health and welfare and
navigation is during the formulation of the initial mission concept, or
when changes are made to that concept. The overall mission may not be
well enough defined at this stage but the potential benefits of autonomy
and associated tradeoffs among space and ground segments could still be
identified.

1.3.2 Mission Definition Phase

This phase should result in a firm set of autonomy requirements
for the space segment and the space vehicle. Autonomy impacts on other
Space Systems Segments should be identified and recorded in the appropriate
interface specifications. The Space Segment Specification and Space Vehicle
Specification documents are considered the primary means of specifying
autonomy requirements to contractors in the acquisition phase. The Request
for Proposals (RFP) may define the concepts of autonomy associated with
the program if this is not adequately clear from the specifications.

1.3.3 Acquisition Phase

The design and validation methodology is applied to implement
autonomous operating functions. Functional requirements and detailed design
specifications shouid document the impiementation of autonomy as required
by the higher level specifications. Interfaces with components outside the
space segment should be well documented. Review and audit activities should
address autonomy as a specific issue and provide the mechanism for insuring
that implementation of autonomy meets specifications.

1.3.4 Operations Phase

Operations provide the critical final validation experience for
the autonomy implementation selected. On-orbit testing and early operational
experience allow the assessment of the design of autonomous features.
Reprogrammable software implementation and adequate memory and omputer
performance margins allow for the incorporation of changes to the autonomous
features as dictated by flight experience and changes in the vehicle as its
operational life advances.



1.4 AUTONOMOUS SPACECRAFT OPERATIONS AND GROUND SYSTEM INTERFACES

Spacecraft autonomy affects the nature and frequency of ground
control interfaces. Many ground functions will remain unchanged in nature
to support executive over-ride capability while not being frequently required
for normal operations. New ground functions will be required to support
the onboard processing required for autonomy. The degree of change in
ground operations 1s directly related to the scope of autonomy required.
This section will concern itself with autonomy for health and welfare
maintenance functions and will not specifically address navigation, command
sequence generation, or payload data processing. Effects nn ground support
of health and welfare maintenance can be classified as changes to existing
functions and addition of new functions.

1.4.1 Current Health and Welfare Support
Current functions tend to fall into four categories:
(1) Telemetry Processing
(2) Performance Trend Analysis
(3) Anomaly Investigation

(4) Repetitious Control for Welfare Maintenance

1.4.1.1 Telemetry Processing. Telemetry data acquisition and processing
is not a continuous activity for most missions. Data is typically acqiired
from the spacecraft at periodic intervals ranging from onca or twice per
orbit to once per week. The sample of data acquired in real time or recorded
since the last readout is processed for analysis by ground support personnel.
Autonomous spacecraft design does not intarfere with the process in any

way. A bzsic autonomy goal expressed in “Goals for Air Force Autonomous
Spacecraft” and Section 2.2 of this document is for the spacecraft autonomy
to be transparent to user and ground control activities. The telemetry

data acquisition and processing may be aided by some autonomous features.

The audit trail requirement for autonomous control actions may include
provisions for recording snapshots of telemetry data during periods when
ground support is not available. This would allow analysts to have access
to data under preselected conditions without the constraint of schedulirg
support at the specific time. The spacecraft may have the capability for
some reprogramming of the telemetry stream contents and format in-flight.
Such a feature can be included in autonomous design, making use of basic
software programmable processing resources required to implement autonomous
control features. In summary, autonomy does not impede the zollection of
telemetry as desired. If anything, the capability may be enhanced.

1.4.1.2 Performance Trend Analysis. Analysis of performance trends from
telemetry data can be carried out in a normal manner. Enhancements to
telemetry collection mentioned above may give the analyst additional aid over
current spacecraft. Analysis of audit trail data gathered during periods of
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autonomous operation may be more meaningful than current “snapshot" practices.
An onboard system programmed to report exceptional telemetry events to the
audit trail could provide evidence of intermittent faults or operating trends
much earlier than would be possible from periodic real time data collections.

1.4.1.3 Anom~1y Investigation. Anomaly investigation would be greatly
simplified and Tsk of spacecraft loss would be reduced by autonomous fault
management. ~  ground operations response to an anomaly in a non-autonomous
spacecraft is a carefully orchestrated action. Spacecraft safety is the
primary concern and no commanding action is taken until data analysis gives
the clearest possible understanding of the problem. This process is proper
and quite necessary as non-autonomous spacecraft can provide little support

to the process. All their actions and responses must be supplied from the
ground after the fault has occurred and its consequences have propagated through
the spacecraft. An autonomous spacecraft can be programmed to react to
specific fault symptoms in the same sense that contingency cperations plans
are established on the ground for response to serious faulcs. Control
authority on the spacecraft allows rapid corrective action that can prevent the
consequences of a fa. ¢ inducing more serious fauits in other spacecraft
subsystems. Such cascading faults can easily lead to loss of the spacecraft
or a complex and risky recovery process requiring time, expense, and loss of
user resources. The primary goal of autonomous fault maintenance is to
provide for recovery from a fault or establis'ment of a safe configuration
before serious consequences can occur. Design of the hardware and software
algorithms is carried out under a set 0° rules that consider spacecraft safety
as the prerequisite of all autonomous control action. All autonomous control
actions and the spacecraft telemetry data relevant to the fault can be stored
in the audit trail records to provide ground analysts with the data needed to
diagnose the onboard conditions surrounding the fault. The occurrence of a
fault and corrective action will be apparent to the ground control segment at
the next service contact. Audit trail and additional telemetry data may be
analyzed to determine the consequences of the fault, and the ground personnel
may act as desired to follow up the autonomous control actions. Simple faults
that would have been readily apparent will still be readily apparent to the
analysts, and serious faults will have been detected before their consequences
mask the original fault.

1.4.1.4 Welfare Maintenance Control. A basic goal of autcnomous design

is to reduce the requirement for the magnitude and frequzncy of routine ground
activity. Time and resource consuming repetitive actions for calibration,
thermal control, spacecraft mode reconfiguration, battery charge mainte: ance,
and a variety of other functions can be performed by use of autonomous contirol.

1.4.2 New Ground Functions

Additional requirements to support an autonomous spacecraft are:

(1) Audit Trail Analysis

11-8




(2) Software Development Support
(3) Spacecraft Simulation

1.4.2.1 Audit Trail Analysis. The audit trail of the spacecraft contains
a record of all autonomous control actions, selected data on the initiation
and success of the actions, and spacecraft state changes. Expanded telemetry
data or “"snapshots” may also be provided. Automated analysis of this data
can rapidly provide controllers with the status of the spacecraft and the
identification of any fault management activity.

1.4,2.2 Software Development Support. Autonomous control algorithms are
largely impTemented fﬁrougE onﬁans software. Ground support will be
responsible for the design, coding, verification testing, and uplinking of
new or modified software and data tables.

1.4.2.3 Spacecra’t Simulation. Some level of spacecraft functional
simulation at system or subsystem levels will be required to support software
development and anomaly investigation. Careful development of simulation
requirements is necessary to assure that enough simulation is supplied to
allow for validation of critical functions without involving excess complexity
and cost.

I1-9
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SECTION 2
DEVELOPMENT OF SPACE SYSTEM AUTONOMY SPECIFICATIONS

2.1 REQUIREMENTS FORMULATION

The selection of detailed autonomy requirements for the space
system is influenced by several factors. The most notable are:

(1) Mission Payload/User requirements.

(2) Mission autonomy requirements.

(3) Constraints due to cost or inheritance from previous design.

(4) Project Office and Agency policies.

The first three factors will be project unique and are derived
from specific concept and mission definition analysis activities. Project
Office and agency policies on Space system autonomy may be formulated based
upon the results of these mission specific analyses and prior experience.
The objective of these policies is to guide the selection of space system and
space vehicle requirements from a set of generic autonomy goals. Specific
policies that aid autonomy requirements definition are:

(1) Elimination of single point failures.

(2) Space System and Space Segment Reliability and Endurability.

(3) Onboard Rescurce Margins.

(4) Reprogrammability of Control and Fault Management.

(5) Sccpe and Definition of Fault Management.

(6) Operation in High Level-of-Conflict Environments.

These policies and the mission specific factors are combined to

aid the specification of the two most fundamental requirements of autononmy -
its scope and curation.

2.1.1 Scope of Autonomy

The scope of autonomy comprises the major space system functions
which are to be autonomous and the identification of the external functions
of which they are to be autonomous. The basic categories of space system
functions have been identified as:

(1) Health and Welfare Maintenance.
(2) Navigation.

I1-10
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(3) Command Sequence Generation.

(4) Payload Data Processing.

The space system specification must identify the autonomous functions
to be required of the mission and the relation between the autonomous space
segment functions and external segments.

In addition to specifying the functional areas affected by autonomy,
it 1s necessary to identify the degree of allowable greund support. Specific
points are:

(1) Type of service supoort to be supplied at ground contacts.

(¢2) Autonomy functions as normal or contingency operation features.

(3) Identification of functions required to be non-autonomous.

(4) Nature of ground support to be required for on-orbit testing
and anomaly investigation.

(5) Definition of any reduced performance allowed during autcnomous
operations.

2.1.2 Duration of Autonomy

The uuration required for autonomous operation must be specified to
complete the requirement for avtonomy. The duration may pe specified in
different manners for one or all autonomous functions. Potential durations may
include:

(1) Operation with reduced ground support.

(2) Operation while meeting ncminal spacecraft or payload
performance requirements.

(3) Oper:tion with reduced performance requirements.
A set of goals investigated by the Autonomous Spacecraft Program
(ASP) were to operate with nominal mission performance for at least bU days
from the last ground contact and to operate with some specifiabie degradation
of performance for at least six menths from the last ground contact.
2.2 GENERIC POLICY GUALS
A set of generic autonomous spacecraft policy goals has been formulated

in SD-TR-81-72 to serve as a starting point for the selection of space system
level requirements. Four categories of policy goals are identified:
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(1) Ground interaction reduction.
(2) Spacecraft integrity maintenance.
(3) Autonomous features transparency.
(4) Onboard resource management.

An additional set of implementation goals is identified for space
vehicle level specification ard listed in Section 3 of this Part. Some of
these implementation goa's are significant enough to be levied as a space
system level requiremenc:.

2.2.1 Ground Interaction Reduction

Autonomous spacecraft shall be capable of successfully performing
their mission function for an extended period of time, without ground support,
and at a specified level of conflict. Specifically:

(1) Autonomous spacecraft shall operate without performance
degradation for at least 60 days from the last initialization
update.

(2) Autonomous spacecraft shall cperate for at least six months
from the last initialization update. They shall do so within
acceptable performance degradation limits for mission-prioritized
functions as defined by each mission.

(3) Autonomous spacecraft shall be able to recover from certain
mission-unique failure modes. These failure modes shall be
identified and prioritized.

(4) Autonomous spacecraft shail be capable of restoring themselves
to nominal mission performance after occurrence of a combination
of non-simultaneous faults, defined a priori, subject to the
availability of snare resources. Knowiedge of occurrence of
such faults shall be available to the ground segment upon
request.

(5) Autonomous spacecraft shall tolerate transient faults without
significant loss of mission capability. Knowledge of occurrerice
of such faults shali be available to the ground segment upon
request.

2.2.2 Spacecraft Integrity Maintenance
The integrity of the payload data stream and usefulness of the

space~raft shall not be reduced by the addition of autonomous features.
Specifically:
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(1) Autonomous features shall not decrease the performance and
functional capability of the spacecraft.

(2) Autonomous features shall not adversely affect the wecrout
mechanisms or consumables of the spacecraft.

(3) Autonomous features shall not appreciably increase the period
required for checkout and initialization on-orbit.

2.2.3 Autonomous-Features Transparency

Autonomous features shall be transparent to the spacecraft user.
(Exceptions may include periods of fault isolation and recovery following a
fault or veriods during orbit maneuvering.) Specifically:

(1) Autonomous spacecraft shall ve maintained in a state such that
they are capable of receiving ground commands.

(2) The ground segment shall be able to exert executive control
over autonomous management activities of the spacecraft. Faults
or combinations of non-simultaneous fauits shall not prevent
executive control by the ground segment.

(3) Autonomous maintenance and fault management actions will be
designed to operate with minimum impact on operation of the
user's payload.

2.2.4 Onboard Resource Management

Management of onboard resources is mission- and mode-dependent.
One may chgcse to accept a shortened useful lifetime in order to obtain maximum
performance in a high level-of-conflict situation. Specifically: '

(1) Autonomous spacecraft shall be capable of adjusting space-system
performance for various micsion-critical modes by managing
available spare resources and expendables even in the presence
of faults.

(2) Software that implements autonomous functions shall be
reprogrammable from the ground.

(3) Software shall accommodate reprogramming so that, in the event
of depletion of certain resources and/or expendables, mission
performance can be maximized within the limitations of the
remaining resources.

(4) Data storage resource, for traceability of autonomous control

actions and storage of telemetry data, should be autonomously
managed.
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2.3 SPECTFICATION CONTENT

This section discusses particular portions of a Space System
Specification affected by autonomy. The specification document format and
content are described by SD-GB-4, "Space System Specification Preparation Guide",
1 April 1981. The applicability of comments for each section of the specification
is dependent upon the autonomy requirements of the program being specified.
Section and paragraph numbers referenced in the text refer to sections and
paragraphs in the Specification, not in this Handbook.

2.3.1 Section 1. - Scope

There is no specific applicability of autonomy to this section.

2.3.2 Section 2. - Applicable Documents

This section should list all references to autonomy definition or
implementation practices that are to be incorporated in the Space System. This
Handbook is a representative candidate for inclusion in the specification.

2.3.3 Section 3. - Requirements
(1) Operational and Organizational Concepts - Paragraph 3.1.7.

The subparagraphs on launch concents and on-orbit operations
concepts should contain a description of the autonomous operations
for each phase of the mission. Un-orbit test requirements for
autonomous operations features and the basic concept for
autonomous control during the nominal mission should be described.

(2) Characteristics - Section 3.2

The performance characteristics (3.2.1) may describe the system
level requirement for spacecraft autonomy in each operational
phase and mode (3.2.1.1). The scope and duration of autonomy

may be specified for each separate operational phase or mode.
Autonomy should be related to the Endurance (3.2.1.3) requirement
for the system. Autonomy may support the full system endurance
requirement or be limited to certain specific functions.

Autonomy requirements that affect physical characteristics
(3.2.2), reliability (3.2.3), and maintainability (3.2.4) should
be included in the appropriate subparagraph of this section.

(3) Design and Construction - Section 3.3

Computer resource specifications are covered in paragraph 3.3.8.
Computer resource margin requirements appear to be adequate for
initial program development, but might be tailored for different
margins at different phases of the project or for flight versus
ground resources.
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2.3.4 Section 4. - Quality Assurance Provisions

This section should identify validation requirements or concepts
associated with autonomy. Section 4.2 on Quality Conformance Inspections
identifies requirements on Design Verification Tests (4.2.2), Qualification
Tests (4.2.3), Acceptance Tests (4.2.4), Pre-Launch Validation Tests (4.2.6),
Operational Tests (4.2.7), and Independent Validation of Computer Programs.



SECTION 3
DEVELOPMENT OF SPACE VEHICLE AUTONOMY SPECIFICATIONS

3.1 REQUIREMENTS FORMULATION

The space system requirements of Section 2 can be translated to
specific space vehicle performance requirements oriented to functions at vehicle
system and subsystem levels. A generic set of autonomy implementation goals is
analyzed to produce a set of applicable requirements. Factors influencing the
selection are similar to those in Section 2.1. In particular, tie vehicle
requirements should have the following characteristics:

(1) Compatibility with mission/payload requirenments.

(2) Implement space system autonomy requirements.

(3) Allow ample freedom for detailed design tradeoffs.

(4) Describe traceable, verifiable autonomv features.

(5) Conform to higher level space system design and

implementation policies.
3.2 GENERIC IMPLEMENTATION GOALS

Implementation goals should be formulated to provide system
and subsystem level goals consistent with the policy goals of Section .

They provide guidance in the selection of specifications and requirements on
autonomous features in spacecraft design. Eight categories can be described
to address the major functional areas of spacecraft design.

(1) Systems (inciuding Thermal Control and Validation)

(2) Electrical Power and Pyrotechnics

(3) Attitude, Translation, and Pointing Control (ATPC)

(4) Data Processing

(5) Payload

(6) Telemetry, Tracking, and Command (TT8C)

(7) Navigation

(8) Propulsion

[I-16

A N vi_ﬁﬁwﬁmwi—wm



The following set of goals was formulated to explicitly characterize
a specific level of autonomous capability. Duration of autonomous operations
was chosen as 60 days with nominal mission performance and six months with

!! acceptable degraded mission performance. These durations were selected as
representative values that were achievable with the current body of experience
and design technique, and as being realistic for health and welfare maintenance
and navigation functions.

_ 3.2.1 Systems (Including Thermal Control and Validation)

(1) The hardware and software architectures chosen shall not preclude
the ability to add additional autonomous capabilities.
(2) The system shall be capable of reconfiguration of spare resources
at the lowest practical and reasonable level.
(3) Curing autonomous operation, performance degradation may be
allowable in specific cases, but only after spares are exhausted.
“Graceful" degradation is preferred over precipitous change.
Where possible, autonomous functions shall mitigate the effects
on performance of a functional failure which occurs after spares
are exhausted.
{4) The adverse effects of faults shall not propagate beyond a
subsystem interface if the faulty subsystem possesses sufficient
. spare resources to recover from the fault condition. Ambiguous
el faults within subsystem interfaces and subsystems' shared resource

o allocation shall be resolved by system-level mechanisms.

(5) A1l fault detection and switching mechanisms shall be designed
to minimize false alarms.

> (6) The spacecraft shall manage propellant usage during autonomously

conducted orbit-adjust maneuvers (stationkeeping and/or
relocation/restoration) to assure that mission lifetime
requirements are met.

(7) The spacecraft shall maintain system temperature control for
all functional states and mission thermal environments.
Furthermore, the thermal-control function shall autonomously
ensure, for all mission phases, that non-catastrophic subsystem
failures cannot induce thermal failures which will cause
prapagation of the initial failure within the satellite system.

i (8) The spacecraft shall utilize selected parametric data (electrica!
profiles, thermal characteristics, and state changes in the
ambient environments, as a minimum) for onboard forecasting of
incipient fault conditions within each of the functional areas.

(9) The execution of any autonomous event or activity not involving
fault management shall not be permitted to conflict with other
(planned or autonomous) activities.
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3.2.2

3.2-3

(10) The spacecraft shall maintain performance and state-change
records (an audit trail) to allow for reconstruction of
performance, fault detection, and fault correction activities
and determination of the status of resources and expendables.

(11) The autonomous spacecraft shall maintain the spacecraft center-
of-mass and center-of-pressure within limits required to support
the mission.

(12) Spacecraft autonomy shall be capable of being validated on the
ground and verified on-orbit.

(13) validation shall determine the design margin (when applicable)
of the autonomous mechanisms.

{14) On-orbit verification and testing of autonomy features shall be
accomplished without disrupting normal space-segment operations
wherever possible. In those cases where some disruption is
unavoidable, restoration of normal space-segment operation
shall be an entirely autonomous process which is performed in a
timely manner.

Electrical Power and Pyrotechnics

(1) Detection and isolation of load faults in power-bus loads shall
be accomplished.

(2) Power-margin management for power bus (including power sources,
power-conditioning elements, and user loads) shall be maintained.

(3) Management and control of the battery state-of-charge, discharge
and reconditioning functions shall be m¢intained.

’

Attitude, Translation, and Pointing Control (ATPC)

(1) The ATPC function shall be capable of autonomous attitude
reference acquisition and reacquisition.

(2) The ATPC function shal® be capable of autonomous fault detection,
correction, and recovery of its subsystem elements (sensors,
computers, actuators).

(3) The ATPC function shall be capable of autonomous inertial and
celestial sensor calibrations to compensate for changes and/or
degradation of sensor parameters. Compensation activities
shall be transparent to the payload user.

(4) Autonomous translation control shall support stationkeeping to
the accuracies required to meet mission requirements.

11-16




\ S

3.2.4

3.2.5

(5)

(6)

(7)

Data
(1)

(2)

(3)

(4)

Autonomous attitude determination shali support commanding of
antennas and payload instrumentation pointing to accuracies
necessary to support the mission requirements.

The ATPC function shall be capable of autonomous attitude-
control propellant management by changing operational mode
and/or parameters.

The ATPC function shall be capable of high-level command and
decision-making for activities such as initiation of turn for
star reacquisition, translation control, and instrument pointirg.

Processing

The spacecraft data-processing function shall be provided with
adequate parametric data from spacecraft sensors and subsystems
so that spacecraft performance, resource status, and integrity
can be determined onboard.

The spacecraft data-processing function shall be capable of
performing from available parametric data the necessary diag-
nostic analysis required to assess the performance, rescurce
status, and integrity of the spacecraft.

The spacecraft data-processing function shall be capable of
implementing from available parameiric data the necessary
diagnostic analysis required to assess the performance, resource
status, and integrity of the spacecraft.

The spacecraft data-processing fun:tion shall be capabie of
storing a) pertinent parametric data, b) diagnostic analysis
results, c) data reflecting control actions taken, and d)
response data to autoromous control actions necessary to allow
ground reconstruction of the spacecraft state for time intervals
up to six months. These data shall be available for ground
assessment upon request.

Payload

(M

(2)

Failure modes within the payload function shall not propagate
into other spacecraft functions.

Redundant functional command and control paths through the
payload function shall not be inhibited by autonomous features.
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3.2.6 Telemetry, Tracking, and Command (TT&C)

)

(2)

(3)

The TT&C function will allow a message to be transmitted to the
ground at the first opportunity following an autonomous management
activity.

The TT&C function shall be prepared to receive ground commands
at any time while in the autonomous state.

The TT&C function shall be capable of transmitting, at the
discreticn of ground control, normal telemetry and ranging
while in the autonomous state.

3.2.7 Navigation

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The spacecraft shall maintain the orbit within specified limits
for 60 days from the last required initialization.

If ground supervisory contact is not re-established after 60
days of autonomous navigation, the spacecraft will continue to
operate within acceptable 1imits even if the navigation function
performance is degraded. Performance degradation will be
measured by the effects of degraded orbit control on payload
performance.

Spacecraft orhit state or orbit-derived data shall be available
to other onboard subsystems and/or user ground facilities as
required. Potential examples: Sun-Earth-vehicle angle to
attitude control; Sun-occultation predictions to attitude
control and power; lunar-occultation prediction to attitude
control; and station-acquisition data and antenna-pointing
vector to ground.

The spacecraft shall have the capability to accert initialization-
state data from the ground or an external source such as the
Global Positioning System (GPS). It shall have a limited

state reinitialization capability for some range of orbit
parameters perturbed about the nominal operating orbit.

The ;. avigation function shall be capable of adjusting performance
limits based upon the availability of limited resources.

The navigation function shall be capable of executing a maneuver,
if required.

The navigation function shall be capable of re-establishing the

normal orbit, within acceptable 1imits, following an easive
maneuver, if required.
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3.2.8

Propulsion

(1) The propulsion function shall detect and isolate autonomously
any failed or degraded thrusters and reconfigure the thruster
canplement to support mission functions.

(2) The propulsion function shall detect and isolate autonomously
any leaking propellant-supply components, including tanks.

(3) The propulsion function shall manage autonomously any limited-

Tife camponents (e.g., monopropellant thrusters) to meet 1ife-
time requirements.

(4) The propulsion function shall be capable of estimating a-priori
any impulse delivered to support navigation maneuvers an
attitude-control functioning.
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3.3 SPECIFICATION CONTENT

The Space Vehicle Development Specification format and content are
described in SD-BG-6, "Space Vehicle Development Specification Preparation -
Guide", 1 April 1981. The vehicle level specification detaiis fall into
five major categories with the numbers in parentheses referring to the
appropriate specification paragraph.

(1) Operational Concepts (3.1.6)

(2) Performance and Physical Characteristics (3.2)

(3) Design and Construction - Computer Resources (3.3.8)

(4) Major Component (Subsystem) Characteristics (3.7)

(5) Quality Assurance Provisions (4.0)

The autonomy requirements should be allocated to this document as
follows:
3.3.1 Operational Concepts

Scope and duration of autonomous operation requirements for the
overall space vehicle should be specified for each phase of prelaunch or on-
orbit operations.
3.3.2 Performance and Physical Characteristics

This section allows expansion of the description of autonomy
operational concepts to an operating mode level of detail for the vehicle. The
role of autonomy in survivability, reliability, and redundancy management should
be specified in the appropriate subparagraphs.
3.3.3 Computer Resources -

Ground simulation, onboard software development, audit trail
processing, subsystem status monitoring, and anomaly anclysis support require-
ments should be detailed.
3.3.4 Subsystem Level Requirements

The subsystem level autonomy implementation requirements selected
from Section 3.2 of this Handbook should be placed in the appropriate paragraph. 1

3.3.5 Quality Assurance Provisions

Validation test requirements selected from the system level goals of
Section 3.2 of this Handbook should be included.
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PART II1
DESIGN METHODOLOGY

The design methodology for autonomous spacecraft consists of an
enginec ‘ng process carried out by a design team, a set of sracecraft system
level architecture and design techniques, and a set of sudsystem level control
reguirements and characteristics.

SECTION 1

THE DESIGN PROCESS

The desigr engineering process is concerned with the identification
of specific autonomy functional requirements and the system/subsystem level
implementation trade-offs needed for a candidate design. The design process
section provides some rationale for the suggested approach and discusses the
implications of autonomy upon the normal spacecraft design and development process.

1.1 SPACECRAFT SYSTEM LEVEL AUTONOMOUS DESIGN

Spacecraft system design is not an ideal example of a process
suited for top-down design methodology. The nature of the total system
development process requires many implementation assumptions, of varying
levels of detail, in the conceptual and mission definition phases.
Consequently, the mission requirements wiil frequently specify or seriously
corstrain design features to the spacecraft system or subsystem level. This
basic fact underlies the importance of specifying autonomous operations
requirements at the mission level lest they be overlooked in the morass of
other ~equirements. MNission 1ifetime constraints, power levels, payload data
stre.n, orbital parameters, and a list of other requirements must be met
regardless of the degree of autonomy required. A basic approach to inclusion
of autonomy is to first choose the set of spacecraft functions required to
perform the basic mission and then identify the functions that must be given a
required level of autonomy. An iterative portion of the process concerns the
resolution of system and subsystem level requirements and the selection of
the appropriate level for allocation of autonomous control for ea.: function.
Table III-1 shows the system and subsystems involvement in the approach
described by the following paragraphs.

1.1.1 Establish a Mission-Specific Functional Baseline

Fundamental mission requirements can be factored into a
functionally oriented set of spacecraft -equiremcnts. These functional
requirements on the spacecraft design can be organized in a hierarchical
manner. Health and welfare and navigation can be considered to perform
three high level functions: 1) Perform a set of useful services, 2) Manage
resources on the spacecraft, 3) Maintair the operational integrity of the
spacecraft. Each of these categories of functions will contain a series of

I11-8
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specific functions which can be specified to a level of performance required
to satisfy the mission requirements. This categorization of functions should
be compiled without regard to allocation to conventional subsystems or to
autonomous control. The intent is to identify all functions that must be
accomplished without regard to the control authority being located on the
ground or spacecraft. This practice must nct be constrained at this point by
"known" details of subsystem implementation. The product that results from
this is a complete list of functions required of the spacecraft system
baseline that characterizes the design. cxamples of a hierarchical breakdown

of functions for a typical spacecraft mission are given by Figures III-1,
i11-2, and II1I-3,

1.1.2 Allocation of Autonomous Functions to Systems and Subsystems

This step occurs along with the development of a traditional
spacecraft design architecture. Two processes are accomplished and integrated
to identify autonomous design options.

A set of functional spacecraft subsystems is defined and the
functional breakdown and performance requirements derived in Topic 1.2.1 are
allocated to these subsystems. Each subsystem engineer then describes each
function in each of the three categories by the centrol structure needed for
implementation. Control requirements for each function are described in
terms of sensing the need for action, directing actions based on analysis of
the sensed data, and acting to accomplish the conirol action. The control
structure steps of sense, direct and act may be cunceptually located on the
ground or the spacecraft. Figures II1-4, I11-5, and I1i-6 provide
examples of detailed functional breakdowns for power, attitude control, and
command/telemetry functions. The lower levels of these functions are the
items that must be examined for autonomous control requirements.

The second process is to determine the options for autonomous
control allocation. The autonomous operations requirements for the spacecraft
are used to determine whether each step of the control structure must be
autonomous. In practice, the steps aie further categorized as:

Category 1 - Required to be autcnomous

Category 11 - Not required, put increases
performance, lifetime, etc.

Category IIl - Autonomy not required or not possible

The integration of these processes produces a selected i1ist of
autonomous control functions which must be provided at system or subsystem
levels to meet autonomy requirements. The two additicnal categories are
those which can be provided if cost effective or responsive to other mission
requirements, and those which can not be autonomous by their nature.
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The result of this step is the identification of the required
autonomous control structure for each spacecraft function. The reguired
autonomous features may then be analyzed for implementation at system or
subsystem levels.

1.1.3 Assess Performance/Cost Impacts of Allocatec Autonomy

A specific set of autonomous functions can usually be satisfied
by several allocations of control responsibility between system and subsystem
resources. Topic 2.1.1 of Part III discusses the process of developing a
control and data processing architecture that will support autonomous control
functions. A variety of tradc-offs are possible for any given architecture.
The designer must perform an analysis of the cost and performance of his
options and choose an approach that satisfies his mission and programmatic
constraints as well as autonomy requirements. Cost impact on overall mission
operations must be assessed as well as cost and schedule impacts on the
spacecraft system. This may require the attention of the contracting agency
to ensure that all operational costs and issues are properly considered.

1.1.4 Integrate with External Interfaces and Requirements

The spacecraft architecture and allocated autonomous control
functions must be integrated with the evolved design of the ground segment,
mission operaticns concepts, validation requirements, and engineering
specialty requirements such as reliability and survivability. The result of
this process may be to conclude that the chosen configuration does not meet
other requirements external to the spacecraft functions. Such a conflict may
be resolved by a new allocation of autonomous ccntrol functions, changes to
the spacecraft requirements, or some combination of these.

1.1.5 Establish Autonomous Baseline

The selected design architecture and autonomous control structure
must be documented as the baseline configuration. The allocation of autonomous
functions in the design should be traceable to mission or spacecraft
requirements. Performance specifications for the autonomous functions should
be developed in sufficient detail to aid hardware/software implementation
tradeoffs, and required system, subsystem, and external interfaces must be
defined.
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1.2 CRITICAL ISSUES IN DESIGN

The design process specified in the topics of Section 1.1 is
based on the fundamental need to define functions required for mission success
before attempting the allocation of autonomy. The success of this implementation
process is dependent upon several important details. This section discusses
some of these details and suggests how the context of individual programs may
modify them.

1.2.1 Hierarchical Refinement of Requirements

Section 1.1 raised the point that spacecraft system design is
not ideal for a top-down design approach. Some form of top-down approach,
however, greatly simplifies the anal sis of functional requirements to define
options for implementing autonomy. The method chosen has proven valuable in
catagorizing the necessary mission functions, first by their applicction in
the mission (services, resource management, and integrity maintenance), and
second by the need for their provision as autonomous functions. The three
functional categories are not intended to fit into a traditional spacecraft
functional architecture, but rather to emphasize the nature of the function's
criticality to autonomous operations requiremerts. The further breakdown
into Categories I, 11, and III are intended to furtier clarify the design
options by separating out those functions which can provide lifetime or other
second level benefits (II) from those clearly needed to achieve autonomous
mission requirements (I) and those which are not required to be autonomous
(ITI). The Category II functions can be considered for implementation if R
their benefits clearly exceed costs, other mission level requirements are
satisfied, or the implementation is easy using resources which will be provided
for the Category I functions. A further breakdown of Category I and II
functions by control structure (sense, direct, act) requirements will highlight
the need for on-board sensing, logic, and control requirements for each
function. This will aid in the assessment of the cost (money, weight, power,
etc.) of implementing a specific allocation of autonomous functions. Table
I11-2 provides an example of the result of applying this technique to a
limited subset of functions required of the DSCS III spacecraft. This approach
is equally applicable to new or existing designs. In one case, the functions
are derived in the process, in the other they are characteristics of the
given design.

1.2.2 Seiection of Implementation Techniques

The selection of implementation techniques involves tradeoffs
between system or subsystem control authority and between hardware or software
implementation. The next topic deals with many of the issues regarding
allocation of controi authority. Its primary effect upon technique selection
is on the number of interfaces required to perform a function and the scope
of control that is provided to a function. System executive control tends to
deal with problems that have a large scope of control, impact different
subsystems, or are spacecraft critical. Many techniques appliicable to system
executive control are also applicable to control at the subsystem level,
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Software - hardware implementation is an option for each of the
sense, direct, and act steps of the control structure. Hardware: wiil always
support the sense function tu some dearee. The major support s to hardwire
a specific sensing function to trigger the direct/act steps. The maxisum
software involvement would probably be in the extrdction of values from an
engineering telemetry or payload data stream. Hardware sensinyg provides the
most direct approach to sensing a specific event. Its reliabilicy is aepeadent
oniy on the hardware components and the reasonadbleness uf the sensed guantity
as an indicator of the desired condition. The primary disadvantage is
inflexibility. Software extraction for telemetry data allows access to a
wide range of measurements without hardware instrumentation penaities.
Reprogrammability of the extraction allows for adaptability to couver changes
in the quantities to be sensed after Lhe hardware is cowplete. Impizmentation
in a control structure requires an interface between the teleetry function
and a control authority.

Logic processes should definitely be implenented in suftware
unless there is no possibility of their change at ali. Trigger levels for
control actions and fault management routines should be modifiable to account
for a wide variety of conditions which -an only be appreciated with flight
experience. Higher than nominal noise levels, subtle system level inter-
actions oetween subsystems, hardware faults, and aging of componen.s all iead
to conditions that may require a change in trigger levels for sensed data.

The direction step of the control structure is possinly the best
candidate for implementation by software logic. Tnis allows flexibility to
change the conditions of response to a sensed action while utilizing the same
or new sensed data. An alternative to the directicn logic is use of an
inferential logic that assumes a specific condition exists upon receipt of
sensor notification. Trus the sense step directly invokes a specific action
iosponse. This is a compact approdach, very easy to implement in software, but
modifiadle if experience shows the need for additional logical processing
upon receipt of the sensed data. There are classes of faults or controi
actions that are not suited to this inferential direction due to their
complexity. The example algorithms for celestial reference reacquisition in
Appendices B and C are good examples of this type of circumstance. Tne
process is simplified by using priority logic tu decide on the order of
execution of three separate resporses. The more complex sensing of additional
data relevant tc each control problem is left to each of the routines. This
allows the most serious issue to be dealt with immediately and the details of
directing its control process to be separated from those of the less serious
possibilities.

The action step of the control structure consists of providing
the responses to control comnands selected by the direct step. The actual
control action itself will normally be a hardware implementation. A complex
contryl action, however, may involve preconditioning cpacecraft subsystems to
accept changes 1n power distribution or therma! conditions. Some devices imay
be turned off to increase the power margin available for transients, while heat
producing devices may be configured to different operating modes. Such
complex centrol actions should be commanded through programnable sequences.
This allows the sequences to be modified in flight to incorporate lessons
learned from their use, or changes in the spacecraft operating conditions
caused by failures or end-of-life performance.
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1.2.3 Autonomy Requirements Aliocation Tradeoffs

Allocation of autonomous functions between system and subsystem
resources is dependent upon the leve! of autonomy to be provided and the
relative role of system executive control and subsystem control for the
autonomous features. Tne hisrarchical breakdown of autcnomous control
structure advocated in Section 1.1 aids in the mechanics of the process and
makes it easier to examine the naturc of required autonomous functions. Some
functions will be sufficiently unique to a 3ubsystzim that it only makes sense
to provide for their contro) as a subsystan respensibility,  Other functions,
particularly those involving maintaining tho integrity of spacecraft functions
(i.e., fault management), will have such a broad scepe 07 control that they
must he located in some sort of overall executive —ontrol authority. There
arz, however, many options between thesc w0,

Topic 2.%.1 in Part III addrisse. the subject of control and
data processing architecture in detail and :neuld be used as a guide in the
selection of a system architecture. Subsystem designers, however, nced a
system level definition of the policies for systen/subsystem control allocation.
Projected executive contrcl responsibilities, resc.rces, and interface
protocols should be determired to aid subsystem designers in the development
of their design requirements. Allocation of the se~se, direct, act functions
of the control structure is one prospect for a system level design policy.

An example is the provision of a central programma::e executive control
authority. Subsystems mav be responsible for sensing fault conuitions,
notifying the central execu*ive contrc!ler of fauizsg, and providing telemetry
data for implementing normal autonomous control functions. The central
executive controller provides a!l direction and action implementation through
software logic and stored commard sequences. The Y¥iyking Orbiter, described
in Appendix A, had this design implementation.

The types of faults to be protected against and the degree of
protection to be provided are other topics for system level poiicy definitign,
Careful selection of system responsibiiities for control and fault management
can provide a high degree of piotection for less effort than required if
responsibilities are delegated completely to the subsystem level.

Power, mass, risk, and cost constraints allocated to a subsystem
will influence the selection of 1liplementation techniques. These allocations
should be made ¢~ the basis of the previously defined system architecture and
rules for autonomy allocaticn between the system and its subsystems. Autonony
requirements add to power, mass, and cost at the system level. The effect of
individual subsystems wiil vary with the autonomous control incorporated
within the subsystem. Impacts of adding contro) and fault sensing capability
10 a subsystem are not as large as providing processing capability to implement
direct and act functions as well. A system level design policy is needed to
define the scope of the subsystem designer's responsibility.

111-24




L

1.2.4 Operability of Autonomous Features

Ensuring that the implementation of autonomy results in an
operable spacecraft that meets or exceeds autonomous goals and requirements
is a major systems engineering responsibility. The hierarchical approach to
identifying autonomous control requirements and system level design poiicies
for implementation is intended to make this process easier. It is still
necessary to review subsystem interfc<e designs for both direct and subtle
impacts on the autonomy of the overal system. Subsystem level design
decisions that detract from autonomy ar< increase reliance on ground support
are often not visible at higher levels ¢€ responsibility until late in the
process. Critical Design Reviews (CDR's) can reveal such problems, though
they may not surface until system integration and validation testing. This
is sufficiently late in the design process that serious cost and schedule
impacts may result from resolving the problems. Care must be taken to exanine
design decisions such as sensor visibility restrictions and subsystem operating
mode characteristics early in the design for their impacts on other subsystems
and overall autonomous operability. A decision that simplifies design and
construction of one subsystem may well have adverse effects on autonomous
functions of others. Attitude control, propulsion, and navigation are
particularly susceptible to this sort of interdependence.

Ground related requirements including the earth based test
environment must receive particular attention. The development of ground
support requirements may suffer from lack of early visibility into spacecraft
design details and operating characteristics. The difficulty is compounded
if the ground operations agency and its contractors lack flight experience
with complex autonomous spacecraft. The process is aided by providing the
program policies and goals for autonomy to those responsible for the ground
segment. A set of spacecraft requirements on the ground segment should be
provided as early as possible, preferably with the spacecraft system require-
ments package. This should provide a set of autonomy related requirements
that are needed for ground control and serve as a firm requirement on the
space/ground interface. Command sequence generation, payload data processing,
and spacecraft simulation are traditional areas for requirements. Software
development support for on-board routines, downlink processing and analysis
support for memory dumps and audit trail, and simulation requirements for
programmable on-board subsystems are items that arise with the addition of
autonomy. The ground segment requirements must consider impacts on both
facilities and operating philcusophy. Those responsible for the spacecraft
design and validation must consider the effects of their design on this
process and realize that they will have the first opportunity to view the
effects of their design on operability. With separate contractors for space
and ground segments, a major part of this systems engineering responsibility
will fal! upon the contracting agency or agencies. In such situations,
penetration into the details of the design process must consider autonomous
operation impacts as well as traditional interface details.

1.2.5 Autonomy for New Designs or Existing Designs

Two major factors influence the difference in providing autonomy
to an existing design versus integrating it with a new design. The first of
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these is the role of control architecture and hardware inheritance. The
second is the role of mass, power, and cost constraints.

Autonomous control authority implies data processing and stored
command sequence capability that may not exist on a non-autonomcus spacecraft
or may not provide for a simple implementation of autonomous control structures.
The DSCS III design assessment of document SD-TR-81-87 providas a direct
example of the application of autonomous design methodology to an existing
system. Allocation of autonomous functions from existing support functions
produced a series of design options that must be examined for trade-offs
between benefits and constraints. Selection of an implementation option is
followed by the process of designing the new autonomous control features and
integriting them with the existing design. A new design allows the advantage
of designing the control architecture and autonomy implementation as an
integral part of the spacecraft, providing implementation options and features
that might not be available otherwise.

Inherited mass, power, and processing features of an existing
design tend to constrain the addition of autonomous control. Simple software
routines for control algorithms offer the cheapest approach to autonomy for
an existing design. This application, however, is limited by existing
arch.tecture, memory margins, and control authority allocation. Replacing an
existing computer or upgrading memory to provide more space for software have
severe design and validation impacts beyond direct mass, power, and cost of
new hardwere. Examples of some of the direct impacts are given in Volume !
of SD-1R-81-87 as assessed for the current DSCS ill design. The proposed
autonomy options are describad in more detail in Voiumne [II.

The same types of constraints will arise in integrating
autonomy into a new design. The designer has the freedom, however, to
utilize autonomous control resources in the accomplishment of other mission
objectives. Additionally, the positive impact ot autonomy on reliability
miy ease constraints on reaundancy of some equipmert or implementation of
safing features. Design of a common digital data bus for the spacecraft and
integration of system and subsystem control requirements offer the designer
challenging options for providing autonomous control while improving on
mass and power over traditional design technigues.

A point of particular interest is the use of a Redungancy
Management Subsystem (RMS) to add autonomous control to an existing design.
The concept is evaluated in detail in Section 4, Volume II[ of SD-TR-81-87.
In summary, the RMS consists of a fault tolerant processor added to a space-
craft as a separate subsystem. It utilizes software algorithms to access
the conventionally designed telemetry stream, select engineering data under
software control, and analyze the data to determine the need to issue pre-
stored command sequences to the standard command subsystem. The intent of
the design described was to provide integrity maintenance through management
of redundant spacecraft resources. A bit of thought and consideration of
the Viking Orbiter Computer Command Subsystem (CCS) example in Appendix A
shows that this concept could easily be sized to handle a wider variety of
autonomous control functions than redundancy management.
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1.3 AUTONOMY IMPLICATIONS FOR THE SYSTEM DEVELOPMENT PROCz S

The current process for system development has evolved over years
of experience to provide for orderly implementation of mission requirements
while providing specialized attributes such as reliability and survivability.
Autonomy is also a system attribute whose requirements must be integrated with
mission requirements in a total system design. The srope of its impact on design,
validation, and flight operations makes it necessary to specify it uniquely and
track the proqgress of its implementation in the system engineering process.
The techniques of implementation have some profounc impacts on spacecraft system
architecture, software requirements, and flight operation support. These

details must be identified and managed to provide the product necessary for an
effactive operational system.

1.3.1 Progrum Management Concerns

Management of a program involving autonomous spacecraft differs in
detail rather than process from one involving non-autonomous spacecraft. The
mission conceptual and mission design phases of the program must consider the
requirement of autoromy as an attribute on the same level as reliebility and
survivability. Project level policies and goals must be established in the
context of the total mission to guide contractors and designers of space and
ground segments. The acquisition process requires careful specification and
management of implementation details to insure that the spacecraft design meets
autonomy requirements, the ground segment provides supporting functions, and
the operations plan properly utilizes autonomous operating functions.

The Program or Project Office should consider the effects of
autocnomy upon contractual relationships as well as upon technical implementation.
Cost and risk aspects of autonomy as seen by a contractor include:

(1) Autonomy is a new attribute whose implementation risks are
not well understood.

(2) Life cycle cost benefits of reducing ground support do not
have a direct beneficial effect upon the space segment
acquisition phase of the life cycle.

(3) Increased front end costs to the space segment will result
from initial implementation of autonomy .

(4) Cost reductions to a contract 1nvolving only the space segment

may be made at the sacrifice of autonomous functions or by
choosing less flexible implementations.
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Several measures may be taken to lessen the likelihood of
programmatic difficulties from these factors.

(1) Provide complete and detailed specification of autonomy
requirements that are expected to benefit life cycle ccsts or
provide high priority operational benefits. Specify
implementation requirements in addition to autonomy scope and
duration.

(2) Provide ground test, on-orbit and lifetime performance
incentives directly related to measurable performance of
autonomous functions.

(3) Give autonomy a sufficiently high priority in program
requirements that there is no tendency to defer autonomous
operating features to ground operations as a means of reducing
costs to the flight segment contractor.

(4) Consider the effects of risk upon the type of contract
employed. A new spacecraft designed for autonomy from the
start may be seen as having more risk than addition of autonomy
features to an existing spacecraft design.

Software development and maintenance and increased data processing
in the spacecraft design offer an additional managerial challenge. Spacecraft
computers and/or microprocessors offer the most flexible and reliable means of
implementation of autonomous control functions for a complex spacecraft.
Hardware expertise must be provided to handle the provision for programmable
Togic and digital control interfaces. The software development effort associated
with an autonomous spacecraft will be higher than for non-autonomous designs
and will involve the spacecraft directly rather than being a ground based
implementation. Configuration management of the on-board software, division
of algorithm design and programming resoonsibilities, and continuing support
in flight are all concerns that arise with the increased importance of the
onboard software.

The following topics address these and other programmatic issues
in more detail.

1.3.2 Specification and Documentation

Autonomy impacts program documentation in both content and magnitude.
Autonomy requirements and their implementatior. must be specified, reviewed, and
configuration managed as any other requirements. The inclusion of additional on-
board software and supporting ground facility capability will result in more
software peculiar documents than exist for current spacecraft designs. Processor
hardware documentation will be substituted 7or or added to traditional hardware
documents.
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Autonomy requirements should be documented as top levei policies
and system requirements as detailed in Part Il of this Handbook. A Request
for Proposal at any stage of mission concept, mission definition, or acquisition
should be used as a vehicle for expressing the contracting agency's policies
on autonomy to the contractors. Ihe same policies, plus supporting materials
on design goals should be furnished to contractors or agencies involved with
acquisition and operation of a ground segment.

The materizl of Part Il of the Handbook discusses the specification
of hignh level autonomy requirements for the Space System and Space Vehicle.
The implcientation of these autonomy requirements must be documented by the
contractor in Functional Requirements to the subsystem level. This process is
not unique to autonomy, but the autonomous functions, their hardware and software
implementation, and their effects on the spacecraft operation must be clearly
docunented and traceable as autonomous functions.

1.3.3 Reviews and Audits

Preliminary and Critical Design Reviews (PDR, CPR) offer
invaluable opportunities to view the progress of autonomous design features.
Autonomy should be a specific agenda item for these Reviews. The PDR should
contain an overview of the spacecraft architectural features that support
autonomous control structures, explicit statements of system level design
rules for autonomy and the allocation of specific autonomous features to system
and subsystem levels. Hardware/software implementation plans, functions to be
protected by fault management, and the degree of computer memory and performance
margin supplied should be explicitly addressed. Preliminary plans for autonomous
operation in each phase of the flight mission should be addressed, with appro-
priate spacecraft requirements on ground facilities, procedures, and personnel
included. The overall thrust of the PDR should show explicitly how autonomy
requirements will be met, just as any other mission requirement. A careful
review of autonomous design features is necessary at this stage of design, as
it will be more costly to add new features as the design progresses.

The CDR should address the autonomous design features at a sub-
system impiementation level of detail. Allocation of control structure
responsibilities between system and subsystem resources, system and subsystem
interfaces, control algorithms for each feature, software implementation ptans,
validation provisions, and status of resource margins are all topics to be
considered in detail. ODetails of subsystem design must be carefully examined
for unexpected impacts on the autonomous operation of other subsystems and the
spacecraft system as a whole.
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The Functional Configuration Audit will review the results of
validation testing to insure that all autonomous operation requirements are
met. Most requirements may be tested at the system or subsystem Tevel. Some
requirements may not be testable except in flight. These should be validated
by simulation and aralysis, supported by results of subsystem functional tests.

t is rarely possibie to test all logical paths of a complex autonomous function.
The validatior process will have identified critical functions and the principal
operating modes of the spacecraft and these will provide a basic set for auditing
the achievements of the design. The Functional Configuration Audit should
insure that features critical for the use of ground operations have been properly
validated as well as those critical Lo spacecraft operation and safety.

The Physical Configuration Audit for an autonomous spacecraft design
should not differ from that required of any other spacecraft.

1.3.4 Cost/Performance Analysis and Design

The cost of implementing autonomous functions can be measured in
terms of weight, power, and complexity as well as dollars. In fact, in<reaces
in these three factors usually lead to cost impacts on the spacecraft system to
support them. Cost and performance analysis is important to both program planning
and implementation. As yet there is no well-defined set of cost data points to
relate implementation costs to the level of autonomy achieved or to reflect the
effects of autonomous design and operation on life cycle cost. Consequently,
the initial effort must fall upon the direct impl ementation costs of specific
features in the spacecraft design. Life cycle costs are highly dependent upon
ground operations costs, and these tend to be ill-defined or supplied at a
specific level of effort. They shall have to be attacked as a separate issue
once an appropriate level of spacecraft autonomy is operationally available.
The most direct approach to their reduction is through mission level design and
operations requirements that deliberately specify autonomy leading to decreased
support requirements.

Design costs and performance benefits became visible at the space-
craft system level when the allocation of autonomous fuinctions is performed
(Topic 1...2). System design rules and policies should call for specific
system/subsystem level techniques that provide the most effective scope of
autonomous control with the ieast impact. This process is exemplified by the
selection of critical functions to be protected at the system level without
regard to the location of a failure. The Command Loss and Radio frequency Loss
algorithms from the Voyager program provide examples of control implementation
in software with minimum impact on spacecraft design. The algorithms use
inferential logic or simple hardware devices for sensing, and adopt a direct/act
strategy of tree switching through a software specifiable set of redundant
elements until the problem is solved. This provides functional protection
against a number of different failure modes with minimum impact on spacecraft
system resources or subsystem designs. Allocation of sensing, airection, and

ction steps of the control structure can also impact costs. Sensing of faults
or operating characteristics may be easy at the subsysten level, but direction
and action may be more easily implemented by a control executive.
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These system and subsystem implementation datails should be examined
as cost trade-offs in terms of weight, power, complexity, and reliability. A
set of options should be constructed to provide the requirad level of performance
for the autonomous baseline design. The chofce of the desired option should
consider the spacecraft design impacts and potential impacts on grocvnd operations
in terms of ease of operation of the spacecraft and changes to the leve! of
support required. The DSCS III Assessment. Volumes I and III provide a high levei
overview and detailed example of the type of design options (SD-TR-81-89) to
be considered.

1.3.5 Software Development

Software to support autonomous spacecraft will be required on-
board, and on the ground. The autonomous control structure is best implemented
on the spacecraft through programmable logic that can be specified through data
base tables. This provides for maximum flexibility without recompilation of source
code and its associated revalidation requirements. Ground software may support
system/subsysteom level simulation, audit trail processing, on-board software
developmesni and configuration management, and performance analysis.

Ground support software requirements for support of autonomous
spacecraft will differ from traditional ground software in function, but the
development process will not be appreciably affected. New or expanded functionai
requirements will arise for telemetry processing, health status analysis,
spacecraft simulation, and software development for on-board computers.

Support of the uplink process may require simulation software to
allow the assessment of the validity of programmed sequences and changes to on-
board software before they are sent to the spacecraft. Cost and design trade-offs
will be needed to determine the level of the simulation and the degree of
modelirg to be employed. The Viking Orbiter was represented by a full functiona)l
software simulation that evaiuated the effects of all proposed commands upon
the spacecraft. The increased complexity of the Voyager spacecraft in both
payload and support subsystems made this ap~roach unacceptably expensive.
Simulations were limited to specific programmable subsystems without an attempt
to exhaustively model the spacecraft behavior.

Uplink support will also require software development facilities to
support design, coding, and validation of on-board software. Documentation,
configuration management, and compiler/assembler support will have to be provided
for the on-board computers or processors.

Downiink support will require the ability to process and analyze
audit trail data and memory readouts as well as conventional engineering
telemetry streams. Engineering telemetry processing can be performed in a
conventional manner, though it might prove useful to have an analysis function
that would correlate telemetry from a real-time stream with stored telemetry and
audit trail recording of autonomous control actions.

Spacecraft software will require programmatic support for develop-

ment and maintenance. Software development plans, policies, and standards must
be selected for implementation of on-board software. Exceptions to the policies
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should be devised. These pre-design activities are vital to an orderly
development process. They set the requirements for the steps of the development
and maintenance process and are needed for an understanding of the process by
both management and implementers.

Software requirements must be developed and documented at system
and subsystem levels. These mayv be integrated with hardware requirements in an
overall system or subsystem level requirements document, but they will provide
all information on functions and interfaces needed to proceed with software
design. Software designs must be reviewed for campliance with algorithm
requirements and compatibility with hardware design and operating constraints.
Ease of incorporating changes should be a consideration in software design,
with table driven logic used to implement all commanding actions.

Configuration management of delivered softwar> will be important in
internal software deliveries and in support of changes during validation test
and flight support. Test results on delivered configurations should be carefully
maintained to support future modification efforts or anomaly investigations.

111-32



SECTION 2

SPACECRAFT SYSTEM AUTONOMOUS DESIGN TECHNIQUES

Spacecraft system level concerns for autonomy are centered
around the overall systems data processing and control architecture, the
techniques available for implementing autonomous maintenance and fault
management functions, the potential design of a navigation subsystem, and
the requiremert to design autonomous functions in a manner that allows them
to be tested to validate proper operation.

2.1 SYSTEM LEVEL ARCHITECTURE TECHNIQUES AND ISSUES

Major system level issues for autoncmy are:

(1)

(2)

(3)

(4)

(5)

(6)

Data Processing and Control Architecture - Providing or
adding the processing capability needed for control of
system and subsystem autonamous functions.

Reliability and Redundancy - Redundant functional capability,
included in design for reliability, forms the basic too!l
which autonomous fault management controls. Redundancy
desian options influence the scope and nature ot autonomous
fault management functiens.

Fault Ranagement - Control of redundant resources is
characterized by the need to detect, isolate, and repair
faults over a wide range of spacecraft operating modes
and in the presence of erroneous indications of faults.

Software Implementation Techniques - Software or firmware
implementation of control logic is the most flexible means
of providing autonomous control. A selection of potential
means for detecting and isolating fault conditions is
presented.

Control and Fault Management Aigorithms - The logical
process for implementing an autonomous maintenance or
fault management function is an algorithm. A series of
prospective and actual flight project algorithms are
described.

Algorithm Design - The process of developing algorithms

for autonomous functions is characterized from the view-
point of design and flight experience.
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2.1.1* Data Processing and Control Architecture

Corpurer size, weight, and power limitations rastricted early
design architectures to a sinc’e c2ntralized proce<sing capability usually
associated with command sequencing. Late Mariner designs and the Viking
Orbiter described in Appendix A typify this architecture. Increased
subsystem complexity and the availabiity of microprocessors are currently
driving decentralization of control and data processing capability to the
subsystem and component levels. A broad spectrum of choice is possible
between camplete centralization of resources and complete decentralization.
The Voyager casign, described in Appendix A, provides a central executive
control -.inority in the CCS with powerful programmable capabilities in two
other subsystems that are functicnal nodes for processing requirements --
the Flight Data Subsystem (FDS) and the Attitude and Articulation Contro!l
Subsystem (AACS). Galileo architecture goes a step further with the
distribution of microprocessors to major payload subsystems. Proliferation
of local microprocessors can lead to excessive complexity just as a single
centralized system can be over-constraining for subsystem requiresents.

Some middle solution of retaining a system ievel executive capability while
delegating appropriate resources to processors sized for individual subsystems
is probably most apprepriate to a centralized or a decentralized architecture.

This topic describes a technique for incorporating the on-
board data processing and control functions required for autonomous control
ard fault management into the set of possible spacecraft system processing
and control architectures. This technique is readily adaptatle to both 1)
already developed spacecraft processing designs where the constraint of
minimal change to the existing subsystem desians is levied, thergby forcing
add-on design procedures, and 2) new spacecraft designs where the autonomy-
related functions can be integrated into the new system and subsystem
designs during the initial desiagn phase. Furthermore, the techniques
described herein can be used for multi-mission applications covering a wide
spectrum of 1) processing requirements sophistication and 2) spacecraft
processing and control architectures. Therefore, the technique may be used
to incorporate fault management features into diversified spacecraft
processing and control architectures covering the range from highly
centralized to highiy decentralized organization. The steps described
in _he subsequent subsections are chronological in order and include
rationale to justify their applicability to the autonomous control and
fault management design process. Furthermore, each step is assessed with
respect to its use in two possible spacecraft processing and control
applications represantaing comparative extremes in the spectrum of mission
requirements and associated architectural characteristics. These reference
applications are 1) a satellite representing an already-developed design
cu-rently having very little auto-~omy and extremely limited on-board conputer
capability and 2) a generic autonomous spacecraft design architecture having
characteristics of a high level of aitonomy and a highly distributed computer
capability which are integrated into "he initial design.

*By Wayne E. Arens
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2.1.1.1 Baseline System Functicnal Requirements. The baseline functional
requirements for the spacecraft form the initial set of needs thal must bo
satisfied by the data processing and control architecture. The derivation

of this set of baseline functions is described in Topic 1.1.1 of Part III

of the Handbook. Mission function performance needs are emphasized, and

health and welfare functions are clearly identified. The need for controi and
fault management is recognized in the provision of appropriate block and
functional redundancy in the system. Subsystem level functions must recognize
the need to provide a sufficient level of information so that fault diagnostics
are available for autonomous and/or ground zontrol.

Parcicular attention should be given to data processing
requirements associated with command, telemetry (engineering and payload)
and attitude control and navigation functions. From experience, the char-
acteristics of these functions and their associated subsystems have placed
major processing requirements on the spacecraft design. Meeting these baseline
mission requirements is a major architectural consideration that must be satis-
fied along with autonomy requirements.

2.1.1.2 Identification of Autonomy Needs. The total system functional
requirements discussed above and derived by Topic 1.1.1 of Part III are now
compared with autonomy requirements to identify those functions that must

be provided on-board. This process is described in Topic 1.1.2 of Part

ITI. These functions will have data processing and control requirements

that must be charactesized for their impact upon system architscture design
along with other mission requirements. The requirements imposed by these
add-on functions are then translated into specific requirements for additional
sensing, processing, redundancy, and interfaces at both the system and
subsystem ievels of the baseline design,

2.1.1.3 Autonomous Spacecraft System Design. It is assumed that some
centralized executive-level computer processing and control service wili

be provided to all subsystems. This assumption is independent of the
mission application and the spacecraft development mode. Provisions for
accommodating additional sensors, processing, redundancy, and input/output
interfaces are incorporated as required into the subsystem designs of the
nonautonomous functional design evolving from 2.1.1.1 to satisfy the
autonomy needs defined in 2.1.1.2. The specific design modifications
involved depend upon 1) the mission requirements imposed upon the spacecraft,
and 2) the spacecraft design mode, e.g., aiready developed spacecraft design
versus new spacecraft design.

For an already developed spacecraft design, where minimal
subsystem design change is an imposed constraint, a new subsystem is added
to the nonautonomous spac2craft design to provide for the centralized computer
executive-level control processes. This implies the possibility of more
than one centralized executive-level computer.
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For a new spacecraft design, oniy one centralized executive-
level computer sudsystem is incorporated. If the nonautrnomous design
evolving from 2.1.1.1 already includes a centralized executive-level
computer for service function purposes, it may be modified to iccommodate
the cortrol and fault management functions required for cutonomy.

Fault management of subsystems that 1) do not require computer
capability for performing their service functions, and 2) require only
relatively simple fault manageme 't functions to be performed to achieve the
required level of autonomy are accommodated by the centralized executive-
level computer, In such instances, a subsystem is responsible for supplying
all necessary censor information and/or diagnostic responses via appropriate
interfaces to the central executive. For such subsvstems, the nonautoncmous
design evolving from 2.1.1.1 is not modified.

In contrast, when subsystems of a nonautonomous spacecraft
design evolving from 2.1.1.1 require 1) additional senscrs and/or 2)
more computing capability than that available from the centralized executive,
to achieve the level of autonomy required by ihe mission, additional sensors
and/or computer processing capability are added to the subsystem design
whether it is already developed or a new design. This subsystem computer
performs fault management functions at the subsystem level under the high-level
control of the central executive. It therefore must maintain an apprepriate
two-way communication interface with the central executive.

For already developed designs, such as described for the DSCS
II1 spacecraft in Volume III of the SD-TR-81-87, additional processing
capability is provided in the form of a separate add-on module designated
as a Distributed Processing Unit (DPU). Subsystem sensor informaticn is
routed to the dedicated DP!' which uses the informaticn to perform fault
detection and associated diagnostics fer its assigned subsystem in support
of the centralized executive-level computer. Such support provides
processed fault diagnostic information to the centralized executive which
1s responsible for the fault recovery function of command generation and
issuance, e.g., the UPU does not issue fault correction commands.

For a new spacecraft design where a subsystem requires
dedicated computer capability tc achieve the necessary level of autonomy,
such capability is integrated into the internal subsystem design. If the
design already requires a computer capability, it is simply modified to
accommodate the required fault management functions. If it does not, a
computer capabiiity is added to accommcdate the fault manacement functions.
In either case, unlike the DPU application to already developed designs,
in which fault recovery commands can come only from the centralized executive,
subsystem-dedicated computers in nrew designs have the option of provicing
a full complament of fault management functions, including recovery from
faults which are unique to the internal subsystem.

2.1.1.4 Centralized Executive Design. Using the autonomous spacecrart
system design characteristics evolving from 2.1.1.3 as a kasis, the
health and welfare related functiona! and design requirements for the
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cent.ralized executive-level fault management computer functions are defined.
Whether or not the centralized fault management computer capability 1)
represents a separate add-on subsystem to accomplish the fault management
functions for already deveioped spacecraft, or 2) is integrated, for new
spacecraft designs, into a single executive-level subsystem that may perform
other function in addition to fault managerent, the functional and

design requirements are defined assuming the availability of at least the
following hardware elements:

(1) Central Processing Unit (GPU).
(2) Read-Only Memory (ROM).

(3) Random Access Memory (RAM).
(4) Nonvolatile Memory (NVM).

A centralized executive architectural design, capable of
providing self-test and self-repair of its constituent elements, is defined
for incorporating the above functional elements in such a manner that all
of the fault management functional and design requirements imposed upon
the centralized executive can be accommocated. Using this architectural
design for the centralized executive function, the software required for
incorpora.ing the necessary algorithms, to achieve 1) self-tast and self-
repair and 2) the fault management executive-level functions required by the
specific mission application, is defined. Based upon the software
requiremerts, design tradeoffs are performed to finalize the hardware
computaticial and storage performance capability. Any additional fault
management processing and centrol capability required by a specific mission,
but not provided by the centralized executive because of practical limitations
resulting from the design tradeoffs, is allocated for distribution to
appropriate subsystems.

2.1.1.5 Distributed Processing Design. Using 1) the autour system
design characteristics evolving from 7.1.1.3, and 2) the centra

executive design characteristics evalvirng from 2.1.1.4 as a basis, the
health and welfare related functional and design requirements that must be
distributed to specific subsystems to meet the missic- autonomy needs
evolving from 2.1.1.2 are definad. Whether or not *his qist-ip,ted
processing capability comprises an add-on 2P. as gdefinaes -~ 2.1.°.3

for already developed des<z~s, or is TPTRITT2I TmtT 2 cow 3 _Sgaitaw
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For already developed spacecraft designs, a separate DPU module,
as defined in 2.1.1.3, is designed and added to an existing subsystem to accom-
plish the distributed processirg needs required for fault-management of that
subsystem. The DPU design includes signal conditioning circuitry to accommodate
additional sensor information, provided by the subsystem, which is not included
in the output telemetry data stream. Furthermore, the DPU is designed without
a self-test and self-repair capability. A separate standby redundant DPU is
provided in case of failure. Fault management functions fcr DPUs are performed

by the centralized executive-level fault management computer described in
2.1.1.4,

For new spacecraft designs, the required fault management distributed
processing capability for a given subsystem is integrated into the new subsystem
design. Depending upon the specific mission needs, this capability may or may
not issue fault recovery commands. For mission applications involving highly
centralized spacecraft architectures for processing and control, all fault
management commands will tend to be issued by the centralized executive in the
same manner as for already developed designs using DPUs. For such cases, like
a DPU, the subsystem fault management computer is designed without a self-test
and self-repair capability. An example of a highly decentralized spacecraft
processing and control architecture is described in Appendix D.

2.1.1.0 Common Memory Design. 'sing 1) the autconomous system charac-
teristics evolving from 2.1.1.3, 2) the centralized executive characteristics
evolving from 2.1.1.4, and 3) the distributed processing characteristics
evolving from 2.1.1.5 as a basis, the functional and design requirements for a
nonvolatile mass memory, capable of providing a mass storage repository for
fault history audit trail data, critical system level software routines, and
critical subsystem-level software subroutines is defined.

For already developed spacecraft designs, a new subsystem, such
as the Data Memory Subsystem (DMS) described for the autonomous DSCS Iil design
opticn in Volume III of SD-TR-81-87, is designed for addition to the spacecraft. |

For new designs, the fault management storage requirements are
incorporated into a Common Memory Subsystem (CMS) design thrat serves all
mass storage requirements of the spacecraft. An example of such a CMS
application is provided for the highly decentralized architecture described |
in Anpendix D.




Ll

2.1.2.1 Basic Approaches. Basic approaches that are of increased
importance in the presence of autonomy goals include effective over-design
when weight, space, and cost limitations permit, deratings of parts/devices,
simplicity of design features, standardization to flight proven parts,
devices, circuits materials/processes, a minimum number of total parts, a
mininun number of device types in the design, and design providing for
testability and inspectability.

Reliability engineering for autonouous spacecraft designs must
support a high inherent reliability in the basic functional teatures cof the
design just as for non-autonomous designs. Tne result of reliability engineering
analysis must alsy support the selection of functions that will require tault
tolerance and fault recovery mechanizations to achieve the reliabiiity required
by the mission. These types of functions that are mission critical or which
have a high design reliability payoff when supported by active autonomous fault
tolerance should be identified as early in the desicn process as possible.

2,1.,2.2 Function Relationship Analysis. Functional relationship
analyses initiated early 1n the design pregram define sequences of related
dependent functions extending from top level mission events tnrougn spacecraft
actions, subsystems actions, and circuit functions, to part level

functions. Tnese analyses effectively provide early participative

support to the design development process by identifying single failure
points in the design at various levels, by indication of tne frequency of
function application in mission operdations, by idenLifyiny areas requiring
more extensive reliability engineering and design considerations, and by
highlighting areas requiring extensive inspection and testing. All of

these outputs are directly applicable to the early selection and development
of fauit tolerance, isolation, and recovery features reauired to meet the
autonomy goals.

2.1.2.3 Failure Mode Effect Analyses. Failure wmode effect analyses
need to be function-oriented for the eurliest and most direct application
to support the design of the fault recovery and autonomy features.
Function failure effect analyses should be accomplished at levels from
subsystem functions to part level functions. Corresponding coverdge of
wechanical and electro-uechanical features should b2 provided by function
failure tree techniques.

2.1.2.4 Redundancy Provisions. Redundancy provisions in functional
designs are often used to i1ncrease the overall system reliability of

the design and to significantly increase the expected operational life.
Unfortunately, redundancy is sometimes considered as an alternative to
effort required to achieve maximum reliability of a simple non-redu.dant
design by effective application of basic reliability techniques. With
the additional requirements of autonomy, redundancy must be considered
only after achieving maximum practical reliability by the elimination of
a!'l practical sources of unreliability with non-redundant design.
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A factor that must be considered, especially when extreme
gains in reliability are desired, is that redundancy is not always pure
gain; redundancy in any application is an increase in complexity that
carries with it some cost in possidle unrelianility.

Applications of redundancy involve consideration of several
characteristics. First, the level at which provisions are added to accomplish
the function by a second, or muitiple means, i.e., at spacecraft systewm level,
at subsystem level, at circuit level, or at part/device leve)l. Second, the
scope, or extent of the redundancy which provides a redundant means for the
point of initial application down to the part level, or backing-up only a
portion, or portions of the overall functional sequence. Third, a decision
whether the redundancy will be ‘Active’ (i.e., powered along with the urimary
mechanization) or be in 'Standby' status (i.e., inactive until failure of the
primary). Several basic types of redundancy vary with respect to these
characteristics.

2.1.2.4.1 Functional Redundancy. Functional redundancy involves providing
more tnan one means (two or more depending on criticality and maximun possiole
inherent reliability of the individual links) of accomplishing a given function.
The secondary mechanizations may encompass a completely or partially different
and separate functional design approach, or it may be a duplicate of the primary.
Variation in approach provides an avoidance of common fault modes.

2,1.2.4.2 Looperative Redundancy. Cooperative redundancy involves splitting
the equipment performing the function into two or more completely or partially
independent pcrtions suc’i that critical elements can fail without terminating
the total function; some degradation may be encountered. Mechanization is
usually in 'Active’ status to avoid the requirement foui detection/activation.

2.1.2.4.3 Block Redundancy. Block redundancy provides two or more nominally
identical elements which perform the same function. Piece parts in series or
parallel arrangements, depending on the nature of the most probaole part failure
mode, and cross strapping of more complex devices/functional circuit asseublies
are typical examples. Though usually set up in ‘Active' state, detection/
activation may be added to gain an increase in total expected operational

life. Care is required in designing detection/activation to avoid expending
the pntential gains of redundancy on loss of reliability from increased
complexity of the added functions.
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2.1.3* Fault Management

Fault management is an active control response to the occurrence
of a fault condition. Design and analysis for reliability constitute the
first level of assurance that a given spacecraft function will operate
properly. Provision for redundant implementation of a function allows a
back-up to the reliability of the basic design. An autonomous spacecraft
requires on-board control of redundancy or other repair mechanisms to
utilize this backup capability. This fault management process corsists of
three logical steps:

(1) Detection - Sensing the occurrences of a fault condition.

(2) Isolation - Identifying the location of the fault and
the appropriate response.

(3) Correction - Reconfiguration of on-board resources to
correct consequences of the fault.

The remainder of this topic discusses the characteristics of faults that
influence the selection of implementation and techniques available for
impl ementation of the detection, isolation, and correction steps.

2.1.3.1 Fault Characteristics. Characteristics of a defined fault are
directly related to thre resources required for fault management and the
degree of protection afforded by the fault management process. The impact
of a fault on spacecraft operaticns, the level of spacecraft architecture at
which a fault is defined, and the interaction of the fault with spacecraft
subsystems and operating modes are primary characteristics of concern.

2.1.3.1.1 Operational Impact of the Fault. The operational impact of a
fault provides an important measure of the criticality of providing
protection. It is a convenient ranking characteristic in trade-offs
among other faults and in establishing a priority of response if several
faults are detected or are being corrected simultaneously. In decreasing
order of importance, potential impacts are:

(1) Catastrophic loss of the spacecraft.

(2) Complete loss of mission functions.

(3) Partial loss or degradation of mission functions.
(4) Loss or degradation of a subsystem function.

(5) Loss of fault management or maintenance capability.

(6) No significant impact.

*By P. R. Turner
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The operational impact of a fault may vary with different
mission phases or spacecraft operating modes. Failure of a sensor utilized
only in a spin-stabilized mode of a three-axis stable spacecraft would not
affect normal on-orbit operations, but might be important if a reacquisition
of references was required.

2.1.3.1.2 Fault Definition Level. A fault may be defined as the
interruption of service of a function at several different levels of the
spacecraft functional hierarchv. Specific levels of definition are:

(1) Sysiem Function Level - Examples of major system functions
.0 be protected are attitude pointing and uplink command
capability. Though these functions may be largely or
entirely implemented in a specific spacecraft subsystem, .
their impact on spacecraft system operating modes and
other subsystems relegates them to system level importance.

(2) Subsystem Function Level - Fuel tank pressure indicator
failure and power converter failures are examples of this ]
level of fault. b

P

(3) Assembly Level - Failure of a single sensor element in an
attitude reference sensor consisting of multiple detector
elements represents a low level fault condition. The failure
may be corrected at the subassembly level without impact
on higher order functions if design of thre assembly
permits.

The level at which a fault is defined is important to providing
the highest possible degree of fault protection with the minimium expenditure
of autononous control resources. Too low a level of fault definition
results in additional definition of faults at a similar level with similar
effects and resource requirements. Too high a Tevel of definition may not -
allow a timely response to a fault or allow adequate isolation of the fault.
Some factors that influence the level of fault definition are:

(1) Available repair level for correction.
(2) Time criticality of responsz to detected fault.
(3) Availability of techniques for isolating the fault.

(4) Level of functional architecture to which the fault x
can be isolated. ]

The Viking CMDLOS algorithm in Appendix C of this Handbook
is an example of a high level fault definition with an example implementation.
The Viking Pressurant Regulator Failure algorithm of Appendix C provides an
example of a lower level fault whose critical nature demanded a fault management
response at the assembly level. 3
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2.1.3.1.3 External Interfaces. A specific defined fault has a range of
potential interface impacts. Some possibilities are:

(1) Payload operations impact.

(2) Forced changes in spacecraft operating mode.

(3) Reconfiguration of one or more external subsystems required.
(4) Reconfiguration of subsystems containing fault required.

(5) Redundancy switching with reconfiguration 1ot required.

(6) No direct impact outside of failed unit.

These characteristics may be related closely or loosely to the operational
impact of the fault. A high degree of external interfaces implies more
resources required for isolation and correction and the potential need for
a spacecraft system level executive involvement in the implementation. No
significant interfaces outside of subsystem favors a local subsystem level
impiementation of fault management.

2.1.3.2 Fault Detection. Fault detection consists of sensing the
possible occurrence of a fault condition. Detection of a fault is usually
considered the first step in the fault management process. It may also be
considered as a final step in closing the loop of the auvtonomous process
after the correction process is completed. The failure to detect the fauilt
after repair action can be considered to verify that the fault management
process has been successfully performed. The three primary methods by
which this may be achieved are:

(1) Direct measurement.
(2) Indirect measurement of symptoms.

(3) Inference.

2.1.3.2.1 Direct Measurement. Direct measurement techniques require the
provision of a sensor that will give unambiguous indications of a specific
fault. The sensor must be provided in the design process. This technique is
most likely to be applied to highly visible faults with serious system impact
and/or time critical response requirements.

2.1.3.2.2 Indirect Measurement. Indirect measurement utilizes tne

sensing of parameters that can be affected by the fault condition. Seccnd
order “"symptoms" that point to the fault must be selected to be as unambiguous
as possitle. Ambiguous circumstances may be resolved by sensing two or more
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"symptows"” and correlating them to assure detection This technique is
particularly appiicable to "add on" fault management schemes where it is not
feasible to 2dd direct measurement sensors.

2.1.3.2.3 Inference of Fault Condition. Inference utilizes the occurrence
or lack of occurrence of an evert to indicate a potential fault. Failure to
receive a valid command within a software specifiable length of time is
considered sufficient evidence to infer an uplink fault in the Viking Command
Loss algorithm of Appendix C. Inference provides a low resource means of
implementing fault detection, but ambiguity can be a major shortcoming.

2.1.3.3 Fault Isolation. 1Isolation of a fault consist of identifying
the proper response for corrective action. Isolation is trivial for a

fault which is detected unambiguously and has only one appropriate corrective
response. Conditions requiring more extensive isolation logic include:

(1) Detected symptom is common to several faults.

(2) Fault has more than one possible corrective action.
(3) Fault may be transient or permanent.

(4) Fault may be correlated with other faults.

(5) Faults and/or corrective actions have different priorities.

Isolation logic will tend to be fault specific and is best implemented in
software. Design of this logic is usually the most challenging part of
fault management algorithm des‘yn. Faul* correccion respense can frequently
be implemented as stored command tables for sequential execution. The
isolation logic must apply logical tests t.c available detection inputs and
choose the appropriate correction command files.

2.1.3.3.1 Common Symptoms. A symptom common to several faults may be
resolved by cross correlation with additional symptoms - positive or negative.
The potential common faults should be examined in a priority order established
by criticality of time response, impact on the spacecraft, or ease of
resolution.

2.1.3.3.2 Multiple Corrective Response. A fault with more than one possible
corrective response may be trivially isolated by only providing one recponse,
probably the most critical. If this is not nossible, some priority scheme

must be provided to select a solution, test for success, and initiate the next
most likely corrective response if the first was not successful. Such “trial
and error" approaches have the shortcoming of not being responsive to time
critical faults and requiring a large amount of commmanding and reconfiguration.
Or the plus side, they may correct multiple faults and provide a series of
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solutions for complex sets of faults that are difficult to diagnose and
isolate directly from available data. The "Tree Switch" corrective response
described in 2.1.3.4 is an example of thic approach.

2.1.3.3.3 Transient P ermanent Fault .dentification., Transient versus
permanent fauTt Tdentification can Usually be achieved in the time domain.
Logical processing of nominal operations should be tolerant to transient faults
caused by noise, radiation environment, or other causes. If this is the case,
a delayed response to one or more occurrences of a detected fault may be
sufficient to differentiate those cases. Counts of fault detection incidents
may be used to indicate the frequency of transient faults, which may be a
symptom of a developing permanent fault. Persistence of the detected fault
beyond a critical period may suffice to identify the condition. It may be
necessary to correlate the detection indication with other data, however. A
sun sensor that is not providing output could be operating properly if the
spacecraft is in an eclipse condition or if its controliing electronics are
commanded of f.

2.1.3.3.4 Interrelated Faults. A fault which is correlated with other
faults requires a pr53e71n§3 priority of response and may require correlation
logic to ensure that the parent fault is corrected before attempting to cerrect-
ing the secondary fault. The complexity of these conditions may be illustrated
by an attitude control fault causing loss of solar array power and eventual
thermal abnormalities. A further level of complexity arises if the attitude
fault is caused by a thruster which is stuck open. The open thruster wust be
closed or isolated before attitude re-acquisition may be accomplished with
subsequent restoration of solar array power and normal thermal conditions.
orjoritization is simplified in a centralized control structure which must
perform sequentially. Provision of decentralized control means that the
elements of the decentralized structure must communicate information regarding
correlated faults to establish a unified response before initiating corrective
actions. Presence of severai faults can serve to inhibit response to secondary
faults until the more serious parent faults are isolated and corrected.

2.1.3.3.5 Correction Priorities. Uncorrelated fauits with different
correction pr‘orit*es are a problem if their correction responses campete for
control or service recources. The problem is simplified for centralized control
architectures, as only one can be treated at a time and a priority scheme must
be provided by an executive. Decentralized architectures present a more subtle
difficulty. The control resources may be available to attempt to correct all
faults simultaneously, but they may have conflicting requirements for spacecraft
power or operating mode configuraticns. Faults involvirg loss of power
generation capability and thermal imbalance are one such combination. Load
shedding is a standard response to power problems, but thermal changes may
require the powering of active heaters. These conflicting correction
requirements must be identified and addressed by isolation logic.
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2.1.3.4 Fault Correction. The principal fault correction response is
to activate redurn 2nt block or functional Capability to replace a faijled
element, This involves issuing of a predetermined sequence of commands

or logically selecting among blocks of predetermined conmands for specific
fault cenditions, The actual correction occurs as hardware state changes,

résponses to be commanded through programmable software Togic enabling table
driven command sequerces,

The complexity of the correction response to a fault may involve
any or all of the following factors:

(1) Isolation level of the fault,
(2) Redundancy 1evel provided.
(3) Redundancy type.

(4) Fault interface impacts.

2.1.3.4.1 SiEglification of Correction Strategx. Correction strategy is
simplified if the tection a solation steps can directly locate the fauity
element, 1If this is not the case, correction actions may have to proceed in a
"trial and error® fashion until the fault is no longer detected or takes a
worst case of action that replaces non-faulty elements in addition to the
faulty one. The easiest cose is usually found for easily identified faults
with major impacts on Spacecraft safety, Design forethought is necessary to
provide the appropriate detection and isolation Characteristics for the
potential fault. The more complex and non-optimal responses usually arise

when minimal control resources are available and/or the fault is not identified
early in the design process.

"Tree switching* until a fault is corrected is an approach
used for the Viking Command Loss algorithm (Appendix C). This technique
consists of Providing a table of uplink redundant elament that are
alternatively switched from one redundant block to the other in sequence
until the faylt condition teminates. This technique provides a generalized

functinn) with minimal resources or detection and isolation (provision for
a counter, resci of the counter, and 3 test). It is Capable of responding
to a wide variety of faults that may resylt in loss of upl ink Capability
and can correct multiple faults as Tong as no two redundant elements of a
function are both lost. The basic cost is in response time and the amount
of subsystem reconfiguration required.

2.1.3.4,2 Redundant Element Availability, The available leyel of the
redundant elements used to correct a fault has an important impact on the
required corrective response. A low level of redundancy may allow repair with
minimum impact on Spacecraft operating modes and other subsystems. It may,
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however, require a significant increase in overhead for detection ard isolation
if a Tow level of redundancy is provided across the design without consideration
of the reliability and criticality characteristics of the elements.

2.1.3.4.3 Block and Functional Redundancy. Block and functional redundancy
may have cifferent correction characteristics. Ideally, block redundancy
should be the easiest tc control at any levei. The faulty element is turned
off and the redundant element is substituted. Any additional complexity is
due to the interface characteristics of the fault. Functional redundancy may
requi-e Tittle corrective action, depending on whether the functionally
redundant elements are in use for other purposes or as a powered backup. A
functional redundancy that normally operates to fulfill a function unrelated
to the faulty element may only affect the processing logic of the faulty
function.

2.1.3.4.4 Fault Impact Across Interfaces. A major impact upon correction
requirements 7s the impact of the fault on other spacecraft subsystems and
functions. Correction action that requires a change in the spacecraft
operating mode or a reconfiguration of several subsystems must be constrained
by the operating and fault characteristics nf those impacted subsystems. Such
faults will require extensiv2 commanding and have a larger memory storage
requirement than faults with little or no outside impact.

2.1.4* Software Fault Detection Implementation

Implementation of an autonomous control structure involves the
use of hardware, firmware, and software. Figure III-7 indicates the
logical relaticnship between these implementations. Hardware logic and
firmware logic burned into Read-Only Memory (ROM) are impossible or awkward
to change after launch. Reprogrammable software allows the maximum
flexibility for changes in control logic with different mission phases and
changing spacecraft healtr conditions, as well as allowing improvements to
control implementation with increased operational experience. Increases in
spacecraft complexity will drive a need for the flexibility provided by
software control logic. T~is topic will address control logic technigues trat
may be utilized for firmware as weli as software, however, the term software
shall be used to refer to the expected mode of implementation.

2.1.4.1 Software and Faults. Software routines serve as a means for
providing fault management logic and as a source of potential faults
themselves. Fault-tolerant computer and processor designs can provide a
great deal of protection against faults within the logical engire itself,
but there remains the prospect of external problems that provide improper
input to software logic without triggering any of the intended protection.
Such occurrences can cause the software logic to operate in a faulty manner
or to produce outputs which serve to propagate the fault, usually making

it more difficult to trace its origin. The techniques discussed in this
topic are more properly considered as techniques for fault -tection rather

#y P. R. Turner
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than fault management. The isolation and action response to a fault
indication are highly dependent upon the fault. It is easier to enumerate
generic techniques for determining the possibility of a fault than responses.
Or rather, the response can be summarized as do something or do nothing.

The details of these choices are left to the ingenuity of the implementor.

Software logic processing can be characterized by three pre-
requisite phases of inputs, processing, and outputs. The prospects for
fault deiection lie in prevention of processing faulty inputs, noting faulty
results in processing, or preventing the output of faulty oroducts. The
best placement of protective logic is highly dependent upon the hardware
and software characteristics of the function protected. Fault management
logic is an overhead that utilizes resources which could be devoted to direct
control logic. Consequently, the identification of tunctions protected and
the system or subsystem implementation of orotection should be a major
system design consideration to prevent waste of memory resources.

Software processed digital information falls into one of twe
categories: bilevel or discrete digital words. A bilevel is represented
as a single digital bit which relates one of two possible states. Bilevel
data types are the simplest possible type of logical fault indicator. They do not,
however, have any way of indicating their own faulty operation unless correlated
with another indicator. This correlation must be provided through some sort of
discrete word structure or relations to one or more bilevels and their associated
fault behavior. Discrete digital words provide more scope for detection of
faulty content. Discrete words, singly or in groups, form software instructions
in memory, data to be processed or output and command structures for external devices.

2.1.4.2 Format Protocol Techniques. Protocols which define characteristics
of valid digital words are particularly useful in input/output checks. Transient
or permanent fauits can affect aralog/digital conversations, register loads,

data bus communications, and memo;y coitents. Format pretocols may be implemented
with or without hardware support tc protect against many of these faults.

Compler error detecting and correcting code techniques have been developed for
high bandwidth applications, but these will not be addressed in this topic.

The emphasis is on simple techniques that can be applied at the low data rates
typical of spacecraft control applications and which require a minimum of
software overhead.

2.1.4.2.1 Parity Checks. Setting an additional bit of a data word t3
consistently provide odd or even parity of the set bits is a time hcnored
technique for detecting many sirgle or multiple bit errors. It is usually
applied in hardwired computer and data transfer hardware, but may be checked by
software as well.




2.1.4,2.2 Sparse Word Bilevel. Consistency checking of a bilevel indicatioun

may be provided by utilizing only one bit in a word at a time. An eight-bit
word will only signify eight distinct conditions with this technique. The
basic error test is that only one of the eight bits in the word may be set at a
time. If more than one bit appears set, an errcr has occurred. This cechnique
can be applied t¢ indicate conditions which are processed sequentially or are
mutually exclusive. This technique js used to monitnr Voyager AACS operating
mode commands, as ~~'y one mode <hculd be active or commanded at any tin

Z.1.4.2.3 First and Last Bits Identical. A protocol requiring the first and
iast bits of a command word to Be Tdentically one or zero is used in the Voyager
AACS to protect against hardware register “fill" errors. This redundant bit
technique is used in paralliel with a parity check on the nonredundant bits to
provide additional protection against hit errors.

2.1.4.2.4 Sequence uf Protocols. Requiring two separate protocols to occur
in specific sequence 1s useful in protecting critial data and command actions.
Commands can require a precursor to enable execuiion or storage. The precursor
may be functional, or only serve as an enable for the critical action. Datea
transfers may be protected by supplying starting and enuing addresses for the
transfer in sequence with separate protccols. As an example, the start address
might occur first with first and last bits zero, followed immediately by the end
address with first and last bits set to one. Both techniques are utilized in
Voyager AACS along with a class of commards that must be preceded by a data
transmission to be valid.

2.1.4.2.5 Mode Validity Check. Tanmand or data transmission may be valid
only in a specific operating or prucessing moce. Execution of some types of
thruster commands may only be valid for a specific AACS operating mode and
should be inhibited for others. Similarly, some operating modes of a subsystem
may not be enterec from others. Use of sparse worcd bilevels to indicate
current and ncy ~ommanded modes can increase nrotection against bit errors in
such a validity check.

2.1.4.2.6 Heartbeat. Heartbeat is a means of verifying the proper oseration
of a continuuusly cycling processor by repragramming it to output a specified
bit pattern at regular intervals. Cessation of the heartbeat signals the
occurrence of a malfunction to any external processor that is monitoring the
heartbeat. Protocol checks built into the heartbeat pattern may be used to
verify the proper operation of the communications bus between processors. This
method was used on Voyager to allow the CCS to wmonitor the health of the AACS.
Some internal AACS fault detection routincs signalled the CCS of a need to
switch to redundant AACS hardware by shutting nff the heartbeat.

2.1.4.3 Performance Assessment Techniques. Techniques for assessing the
proper performence of an autonomous operation can be applied to input, output,
or processing. Routines to implement command processes or telemetry tend to
primarily involve data handling and logic tests. Checks on input and output
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may suffice to dete-t errors that pass format protocols. Navigation and attitude
control involve significant amounts of complex computation with logic paths and
final results dependent upon the outcone. Additional techniques are required

to locate faulty operation in a routine before vital evidence of the problem is
destroyed and to assess the operation of the software logic. These techniques
may be applied to these ends.

2.1.4.3.1 Magnitude Limit Checks. Comparison of the value of a quantity

with known or empirically selected bounds is applicable to inputs, outputs, and
computed quantities. Flight experience has suggested that wide tolerances be
initially selected for dynamic quantities. As experience is gained with noise
levels, trarsient faults, and subsystem interactions, the limits may be tightened
with less 1ikelihood of 2 false triggering of fault detection.

2.1.4.3.2 Sign Cnecks. A quantity that shculd always be positive or negative
can be tested for consistency.

2.1.4.3.3 Evaluation of Constants. Natural constants involved in computation of

physical processes may be evaluated from current measured or computed values.
Navigation may use gravitational constants to check for gross errors in estimated
or propagated state. An accurate navigation system could utilize the technique
to detect thruster leaks or performance degradation. The applicability of the
technique is dependent upon the accuracy with which the constant can be evaluated
and the implications of the accuracy on the detection of the fault.

2.1.4.3.4 QOverflow Test. Computations involving summing inputs from a variety
of sources are prone to overflow. Such computations occur frequently in control
law evaluations, and an overflow might produce faulty control output or
characteristic behavior of a saturated subsystem component. In either case,

it is important to protect the output of the computations under these conditions.

2.1.4,3.5 Correlation of Inputs. Comparison of inpuis from redundant sources
can be used to 1dentify faulty data. The Voyager AACS gyro package design
provides redundant measurements of rates about each axis. Comparisons are used
to initiate fault isolation responses when the inputs differ significantly.
Comparisons that differ intermittently may be a result of noise or impending
failure. The immediate response te a single occurrence could be to ignore the
input, with a more serious response taken if the symptom continues.

2.1.4.3.6 Redundant Computation. Critical quantities may be computed in
series or parallel as a validation of performance. Input data from separate
sources or separate processing algorithms may be used with the same data. The
applicability of this technique is dependent upon system architecture or the
availability of alternative computation algorithms.

ITI-51




2.1.4.3.7 Checksums. Software may be used to implement a checksum computation i
on memory contents that have not been modified or which should remain constant. 5
This provides assurance that changes or faults have not occurred in blocks of

input data or coded logic. This might be an appropriate technique for use by -
an executive routine when software has been reloaded or a data message has been 1
stored in memory.

2.1.4.4 Logical Fault Detection Techniques. These techniques are useful ]
in detecting or diagnosing fauits that occur in processing logic. The logical

fault may be due to fauity data that was not detected, unusual characteristics -
of subsystem behavior, numerical instability in a computational algorithm, or a ]
logical fallacy in the basic algorithm design. The source of the problem is
not as important as the detection of it.

2.1.4.4.1 Execution Timing. The execution of a routine or block of quantifiable
logic may start a timer which runs during the execution. The timer may have

some a priori upper limit that should not be exceeded, or the timer could be
exmni:éﬁ after completion of execution for suspiciously 19ng or short duration

of execution. This tecanique may be useful as a high level chcck on major
functional processing or a check on a lower level block of logi. containing

loops of indeterminate du~ation. A well-known nonvariable log'~ process could

be checked to insure that it ran the proper amount of time. The "time out"

feature can prevent endless loops from lockina up a computer due to an error.

2.1.4.4.2 Loop Counter Limits. Ccunters can be placed in an interactive
loop to determine the number of execution cycles. An a priori limit on the
allowable nunber of cycles can be used to prevent infinite or excessive looping.
This can be particularly valuable in loops that are to be executed until a
computed estimate converges to within a tolerance of a final value. Such loops
can rarely be tested over a full range of inputs and are frequently subject to
instabilities.

2.1.4.4.3 Error Count Thresholds. Non-fatal errors that can be igncred if
caused by transients should be tallied to provide a measure of tneir frequency

of occurrence. This count may be useful only as a diagnostic, or may serve as

an indication of an intermittent fault. An error count threshold can be set to
trigger further fault diagnosis or corrective action if an excessive accumulation
of such errors occurs.

2.1.4.4.4 Control Action Counts. A number of occurrences of a specific
control action, such as thruster firing or momentum wheel unloads, can be
indicative of a fault. Such indicators may be outside the responsibility of a
subsystem level fault management scheme by virtue of their subtle interaction
with the subsystem or the fact that external faults drive them through proper
resporise of the subsystem. The major subsystem impact might be excessiva use
of subsystem resources (propellant, computation time, etc.).
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2.1.4.4.5 Self-Test Algorithms. A system or subsystem level resource may
contain a test routine which produces deterministic actual output for a specific
input. This routine can be executed upon indication of certain faults or may

be periodically executed as a routine action. A comparison of actual outnut

with the expected output may be used as a fault indication or to nrovide diagnostic
data for analysis of the logical performance of the system.

2.1.4.4.6 Ticket Checks. A ticket check is a means of tracing the logical
flow in a routine’s execution. Completion of or entry into a logic path is
recorded by setting a bit in a "ticket word". The bit status of the word acts
as a record of the progress of execution of the routine. Routines with fixed
Togic should have a deterministic "ticket" value after proper execution.
Routines with variable logic may have a subset of acceptable ticket values or
certain acceptable sequences of ticket values at different points in the logic
low. A major value of this technique is that it indicates what logic flow was
taken in unacceptable cases and serves as a diagnostic tool as well as a check
on proper sequential execution of logic. :

2.1.5* Algorithm Development

The algorithms presented in Topic 2.1.6 were developed to augment
hardware reliability and fault protection which was designed as part of the
Viking and Voyager spacecraft subsystems. The development process which produced
these supplementary software algorithms is summarized ir this section. The
description of the development process has been changed to incorporate lessons
based on this previous experience and to present a development approach which
accommodates the broader requirements of more fully autonomous systems than
have flown to date. Emphasis has been placed on fault management techniques,
rather than maintenance functions, becausz of the broader knowledge base in
fault protection develoned to date. The same basic algorithm development
approach can be readily adapted to inaintenance functions for fully autoromous
systems, as was demonstrated during the Viking Extended Mission.

2.1.5.1 Algorithm Function. The algorithnis contain spacecraft software
logic whose purpose is to augment fault protection features incorporated in
sp>cecraft hardware. Development cof such software requires an intimate
understanding of how the hardware functions in both normal and abnormal
operation. The algorithm functions complement the hardware design and
operating characteristics to achieve the required spacecraft fault protection
or maintenance requirement. The optimum design process thus requires that
hardware design, component selection, and algorithm function selection proceed
simultaneously and with close coordination and a higl degree of interaction.
This process ensures that hardware and software functions are complementary
and achieve the required degree of in-flight autonomy with minimum weight,
power, cost, and complexity.,

Note that the process just described is different from design
piractices to date (including those of Viking and Voyager) which have almost
always added software algorithms for tault protection and maintenance to hardware
which was already designed. This experieace has suggested that early integration

*By Robert W. Rowley
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of software function selection and design with the hardware design process
would have produced a somewhat different design in both areas and would have
enhanced the flight performance significantly.

Lriteria for partitioning functions between hardware and software
are summarized in 2.1.5.4. Flight experience is summarized in Part V.

2.1.5.2 Requirements. Fault protection requirements can be summarized as
follows:

Maintain Commandability: The spacecraft must be able to receive
and correctly process commands. This preserves the ability of ground controllers
to assist in fault correction and sequencing the spacecraft.

Earth Point: The spacecraft must maintain a primary antenna
pointed at earth. This is required to maintain commandability (uplink) and data
return (downlink).

Preserve Power: The spacecraft must maintain a positive power
margin under all operating conditions, including during fault correction
activities.

Minimize consumable use: The spacecraft must minimize use of
attitude control and trajectory correction propelliant to maximize operating
lifetime.

Note that fault protection requirements are not stated as software
requirements. The software algorithms added to the spacecraft respond to
hardware needs in achieving these overall system requirements.

Fault protection requirements for military spacecraft will include
those described here for planetary spac:craft, but must ho specified in the
highest level project documents at the outset of the project, and must be
reflected in lower level design documents which control the hardware/software
system and subsystem design.

2.1.5.3 Critical Fault Selection. The following quidelines should aovern
the selection of the critical faults to be protected against.

(1) A failure mode and effects analysis (FMEA) should be
developed early and used to change hardware and software
designs to minimize critical faults. (Current spacecraft
design practice does not normally require an FMEA early
enough to achieve an optimum balance of hardware and software
fault protection).

(2) The faults to be protected against should be those that
affect spacecraft function. Project level requirements,
including those incTuded in 2.1.5.2 should determine the
functions to be protected.
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(3) Faults should be groupea so that critical faults can be
corrected with as little delay as possible. This not
only preserves operability, but better prepares the
spacecraft to protect itself against subsequent faults.

(4) A corollary to the previous guideline is that critical
faults should be isolated from the system to avoid later,
perhaps unnecessary, switching of related elements.

2.1.5.4 Hardware/Software Tradeoffs. As discussed in 2.1.5.1, the
hardware and software for autonomous systems must be developed in parallel,
with fault protection applied in hardware, software, or both to best achieve
mission requirements. This requires a significant change in current spacecraft
development practice, where the hardware is usually well into design before
software development begins. The results of current practice as applied t. the
Voyager Attitude and Articulation Control Subsystem has been summarized in
Reference 1. This represents a broad assessment of fault protection processes
and flight experience and forms much of the basis for current spacecratt fault
protection design.

Tne following guidelines summarize design practices and tradeoff
criteria which can influence the split between implementing fault protection in
hardware and/or software.

(1) Uncorrected faults often tend io propagate outside the
failure area (e.g., excessive power use in one area may
cause thermal problems in adjacent areas). Thorough
modeling of system operation and rapid isolation of
faulted elements is required.

(2) Cross-strapped and redundant hardware elements (i.e.,
switchable elements) should be similar in size or
function and as small as practical. Switchable elements
often should be smaller than required to meet basic fault
protection criteria such as single point failure p-otection.
This enhances rapid detection ana isolation of faults.

(3) Faults should be detected by measuring whz: is required;
inference and analytical techniques should only be used
where direct measurement is impractical. Control algorithms
and fault protection algorithins should be developed in parallel
since they will be interactive.

(4) Excessively tight margins can make fault management
techniques more complex. Examples include power margins,
fuse sizing, temperature margins and telecommunication
link margins. Excessive activation of fault protection
features with tight performance margins can propagate and
cause additionai proolems.
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(8)

The use of expected results (feed forward) from control
laws and si-iiar algoritlms rather than commanded results
to determine existence of a fault can reduce the number
of false alarms. Such tachniqu2s require a thorough
understanding of system perfoimance and may be expensive
in software, but enhance operability.

The selected computer architecture influences the timing,
complexity, amount of interfaces required, and many other
features of fault protection algorithms. Architesture
selection should not neglect the requirements of fault
protection (another reason why fault protection should
be included early in system design rather than added on).

2.1.5.5 Algorithm Development Process. Selection of specific algorithms

required to support spacecraft operation 1s an output of the spacecraft design
process. Following the selection of the software functions to be developed,
the following steps summarize the algori*hm development process:

(1)

(2)

Conceptual Design - Although currently passing out of vogue,
the flowchart remains a comsonly used tool for summarizing
the design and operation of algorithwms (see, for example,
Appenaices B and C). They continue to remain invaluable not
only in developing the initial design, but in visualizing
how the algorithm functions during the detailed coding and

development, during test and troubleshooting, and pa:ticularly

during the reviews and critiquing sessions necessary to
ensure a well thought-out design.

The design of fault protection software should be performed
by personnel completely familiar with the design and
operating characteristics of the hardware. Extensive test

and analysis of operation under 4all conditions wmay be required

to model performance under off-nominal conditions (such as
thermal or voltage extremes) to ensure proper software
responses to false triggers. because hardware performance
and idiosyncrasies must be well understood by the algorithi
designers, the software logic design is best performed by
the hardware cognizant organization.

Audit Trail - The primary purpose of the audit trail is to
determine whether the fault protection features function
properly. Algorithms must provide time-tagged information
on significant events for inclusion in a master audit trail.
To avoid excessive data accurmlation, this time-tagged
output must be in nigh-density, compressed format. However,
it mist contain adequate diagnostics, including timing, to
reconstruct the cause and effect of each event in what can
be a lengthy chain of fault protection actiors.
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As discussed in Reference 1, the audit trail provided in
the Voyager design proved to be inadequate in diagnosing
the experiences associated with the launch of Voyager 1.
The result was a tedious ground reconstruction process.
A conclusion from this experience is that proper audit
trail design must be part of the learning process during
algorithm design, development, and validatior steps and
is heavily influenced by experience gained during the
development process.

(3) Algorithm Development and Review - Coding, test, and review
form an iterative process which must be repeated several
times to ercure proper operation of the algorithm.

Periodic reviews and demonstration (both formal and informal)
of algorithm functioning are invaluable, with tne informal
peer group “what-if" discussions generally proving most
useful. The purpose of the test and review sessions should
be to uncover conditions which cause the algorithm to fail,
either by not functioning properly, failing to function

at all, or triggering when it shouldn't.

Software simulators should be used not only to verify
normal operation, but to check operation in the presence
of parity errors, noise, a complete spectrum of faults,
and human operational errors.

Review and test should include the experience gained on
previous programs as well as prior history with the
algorithm of interest. Continuity of personnel is vital to
successful development of autonomous flight software.

(4) validation - A formal test and validation phase should be
performed at both the algorithm or subsystem level and
at the spacecraft system level. Each algorithm should
be tested at all assembly levels, since the level of
interaction {(and the potential for unexpected responses)
increases. Integrated hardware tests have proven to be
more helpful than pure software testing or simulations.
After assuring normal operation, the software must be
exposed to as many operating conditions as possible to
flush out unexpected or wrong responses. Included in
this matrix should be the introduction of off-normal
and completely incorrect inputs to ensure that under no
conditions will the software provoke responses other
than those which achieve the original requirements.

L]
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2.1.6* Autonomous Control and Fault Management Algorithms

The fault management algorithms used on recent planetary spacecraft
illustrate the application of the fault management tools presented in this
Handbook. Whiie the availability of programmable on-board resources has enabled
increasing fault protection over earlier hardwired designs, these efforts have
necassarily been limited by on-board memory size to those faults considered
most threatening to spacecraft health and to the ability of ground personnel to
maintain communication. Except for a few critical events, such as launch
or planetary orbit insertion, it has generally been acceptable for the fault
routines to place the spacecraft in a safe mode awaiting ground action. Thus
the fault protection software developed to date, while illustrating many of the
principles discussed, is a relatively small portion of the software required by
a complex autonomous spacecraft of Level 5 or better which must operate unattended
for up to 6 months.

The algorithms provide a tier of reliability protection to back
up the basic spacecraft design. Many algorithms serve to back up commanded
turn, scan platform slew, or trajectory correction maneuvers which are executed
under on-board control. Limit checks of sensor outputs and computer interface
protocols are used to trigger many algorithms. Algorithms are not implicitly
designed to check for secondary failures in the sensing of a fault or to account
for a failure in their own logic design. Incidents cuch as these have been
considered multiple failures ana the attendant risk is considered in algorithm
design and validation. Excent for the Viking extended mission (discussed
below), fault management algorithms are designed prior to launch. Extensive
reviews, checkouts on software simulators, and validation during spacecraft
system test are then performed. Nevertheless, experience with the spacecraft
after launch frequently results in modifications to the algorithms. Changing
spacecraft operation due to faults or end-of-life wearout failures also required
post-launch software updates. The ability to modify the software in flight
thus provides an invaluable tool to adapt spacecraft operation to changing
conditions.

To &id in bridging the gap between fault protection algorithms
developed to date and more extensive algorithms required for future spacecraft,
a series of generalized algorithms have been developed as examples. The
following sections summarize both these generic routines and the specific
routines developed and flown on Viking Orbiter and Vovager.

2.1.6.1 Generalized Algorithm Forms. Based on a planetary spacecraft
experience and the DSCS ITI assessment study. A series of generic algorithms
has been developed to demonstrate techniques for detecting, isolating and
correcting representative faults. Algorithm development proceeded to the level
of functional flow charts and a general description of the processing required.
No software development was attempted. A requirement of 60 days/6 months
operation without ground support at Level 5 autonomy, as discussed in the
SD-TR-81-87 was the primary driver in formulating the techniques developed. No
specific spacecraft or mission was assumed. These algorithms are thus intended
as generic examples of fault protection apprcaches rather than mission specific
fault routines as presented in the following section.

*By R. W. Rowley
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Algorithms were developed for power, attitude control, TT&C and
propulsion functions. Table III-3 summarizes these algorithms. Several
representative examples are included as Appendix B.

2.1.6.2 Specific Algorithms from Pianetary Designs. The unique require-
ments of planetary exploration missions have forced the deveiopment of
increasingly more complex fault protection routines for planetary spacecraft.
Recent experience with the Viking Orbiter missicns to Mars and the Voyager
missions to Jupiter and Saturn has been documented and is presented in this
section and in Appendix C.

Planetary mission requirements which force increasing application
of on-board fault protection include long communication times, long mission
durations and limited availability of deep-space tracking net time. For example,
the Voyager prime mission (through Saturn encounter) was four years in duration
with a two-way light time at Saturn of 2 hrs. 53 min. Tracking was often
Timited to one pass per day witih 12 to 16 hours between passes. Critical
planetary encounter sequences typically occur near the end of the spacecraft
design life when failed or degraded elements are present and when communication
times are longest.

Fault routines were developed after specific faults were identified
by analysis, test or flight experience. Since fault protection by on-board
software was not initially a project requirement, the atility to cope with
the identified faults often depended on the flexibility already incorporated in
the hardware design. Thus, the listings of Viking and Voyager algorithms which
follow represent only part of the software control to be included in a fully
autonomous spacecraft.

2.1.6.2.1 Viking Orbi“er. The Viking Orbiter Computer Command Subsystem
(CCS) performed spacecraft sequence control and contained all fault protection
software. (The orbiter is described in more detail in Appendix A.) The
spacecraft design used block redundancy extensively so that fault routines in
many cases relied on switching of redundant eiements. These algorithms shown
in Table III-4, were designed to ensure completion of mission critical events
such as Mars Orbit Inseriion (MOI), maintain a command link in the event of a
receiver failure or inability to process commands, maintain sun acquisition
and downlink, and maintain spacecraft power. Except for critical mission
phases such as MOI, the spacecraft usually reverted to a safe condition after
exercising preprogrammed correction algorithms.

Following the nrimary mission, a lengthy extended mission was
conducted until both orbiters ran out of attitude control gas. The CCS on each
spacecraft was reprogrammed with additional control and fault management
routines. These routines were designed to ease the workload on a greatly
reduced ground operations team by performing routine operations such as
autonomously charging batteries after occultations, and handling degraded
operation as various wearout or end-of-life phenomena developed (such as attitude
control gas jet leaks). These additional routines resulted in significantiy more
autonomous operation than had been designed into the original mission.
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TABLE III-3

Generic Fault Management Algorithms

NAME

FUNCTION

Uplink Maintenance

Downlink Maintenance

Load Fault Management

Battery Load Management

Computer Processor/
Memory Checkout

Telemetry Checkout

Loss of References

and Reacquisition

Attitude Control System
Health Monitoring and
Fault Protection

Thruster Management

Maintains a continuous telecommunications uplink by
detecting and isolating anomalies in the receiving
chain and either adjusting or replacing elements
to restore performance.

Maintains a continuous telecommunications
downlink by detecting and isolating anomalies
in the transmitting chain and either adjusting
or replacing elements to restore performance.

Monitors electrical load impedance and corrects
a noncatastrophic fault condition. Action taken
depends on criticality of load.

Provides an autonomous ability to manage power
loads to prevent battery depth of discharge
from reaching a predetermined critical point.

Detects and corrects faults at the block
redundancy level in processor and memory
elements of the spacecraft computer subsystem.

Detects and corrects faults at the hardware
block redundancy level in the information
acquisition and telemetry generation elements
of the spacecraft telemetry subsystem.

Maintains 3-axis acquisition of celestial
references and provides fault management
for fine sensors.

Monitors the health of ACS devices, detects
and verifies faults, and recovers by switching
to a redundant element o~ a back-up operating
mode.

Verifies proper thruster operations, reconditions

a faulty thruster if possible, and replaces a failed
thruster with a sté-dby unit if degraded operation
is not allowead.
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TABLE I[1-4

Viking Orbiter Spacecraft Fault Management Algorithms - Primary Mission

NAME

FUNCTIUN

CCS Errors (ERROR)

Mars Orbit Insertion
Power Transient
(MOIMAU)

RF Power Loss (RFLOSS)

Command Loss (CMDLOS)

Rol1 Reference Loss

ACE Power Changeover

Battery Charger
Disconnect (BCHGDS)

Share Mode (SHRMOD)

Pressurant Regulator
Failure (PRSREG)

Responded to anomalous CCS hardware or software
conditions. Normally placed the CCS in a “wait”
state (except during Mars Yrbit Insertion
maneuver).

Provided a means to continue CCS execution of

the Mars orbit insertion maneuver in the presence
of a spacecraft power transient or attitude control
electronics power changeover.

Corrected a low power output of either the exciter
or TWT by cycling through all possible S-Band
exciter/TWT combinations until the downlink

was re-established.

Assumed a spacecraft failure if a command was
not processed in a specified number of hours.
Systematically switched redundant element until
a valid command was receivea by the CCS.

Responded to a loss of Canopus reference star

by commanding a flyback and sweep of the Canopus
tracker instantaneous field of view to search
for the star within th: tracker's field of view
foliowed by a roll of the spacecraft to search
for the star.

Caused a switch to the redundant Attitude
Control Electronics (ACE) under s, ecific
fault conditions.

Monitored the temperature of each of the

two batteries during charging, Disconnected
a battery charger from its respective battery
if an over-temperature condition was detected.

Determined that the spacecraft was in a share
mode and shed pre-assigned loads to allow the
boost converter to boost the solar array
vcitage to the higher operating point.

Detected a propulsion regulator leak and
isolated the regulator from the high pressure
helium supply before the propellant tank relief
valves could actuate.
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The alcorithms developed during the extended mission are summarized
in Table I1I-5. Reoresentative examples are documented in more detail in
Appendix C.

2.1.6,2.2 Voyager. The Voyager spacecraft contains two computers which
perform fault management activities, the Computer Command Subsystem (C(S) and

the Attitude and Articulation Control Subsystem (AACS). A third computer, the
Flight Data Subsystem (FUS), is not norwally active in fault management. (The
Voyager spacecraft is described in more detail in Appendix A). The AACS provides
fault management for attitude control functions while the CCS provides fault
management for the remainder of the spacecraft as well as serving as the
spacecraft executive. These executive functions include fault checks on the
AACS and AACS-CCS interfaces.

The spacecraft design used block redundancy extensively with the
result thet many fault correction algorithms rely on switching redundant elements
to alleviaie a problem. High priority was placed on maintaininc earth pointing
and a downlink and maintaining command capability. Algorithm development was
guided by the overall Voyager reliability requirement that no single failure
result in the loss of more than 50% of the engineering data or the loss of data
from more than one science instrument. Additional goals of fault management
include ensuring spacecraft health by managing power, minimizing expenditure of
consumables (hydrazine), and checking the internal operation of the CCS and the
AACS.

The Voyager fault routines are summarized in Table 11I-6.
Representative examples are documented in detail in Appendix C.
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TABLE IlI-5

Viking Orbiter Spacecraft Fault Management Algorithms - Extended Mission

NAME

FUNCTION

Battery Discharge
Monitor (BATMON)

Autonomous Battery
Charging (BATCHARGE )

Science Power On
(SINPON)

Receiver Switch
(RCVRSW)

Downlink Off
(DLOFF)

Accelerometer
Monitor (ACLMON)
Automatic Leak

Clearing (CORKER)

Stray Light
(STRAY)

Low-Rate Engineering
Telemetry (DECOM)

Monitored discharge current of the two batteries
during occultation and configured the spacecraft
to a safe state if state-of-charge was below a
safe level due to loss of one battery.

Autonomous!y recharged the batteries after solar
occultation by monitoring battery temperature.

Prevented damage to science instruments from
power transient at turn on by monitoring current.
The instrument was turned off if an over-current
was detected.

Protected against a receiver failure during
extended occultation by monitoring oscillator
current and switching to the back-up receiver
if current fell below a preset level.

Insured that the spacecraft transmitter would be
turned off at end of mission in the event of loss
of command capability.

Terminated the propulsion burn-to-depletion test
performed at the end of the mission by monitoring
the accelerameter count and commanding engine
shutdown when spacecraft acceleration dropped a
preset amount,

Monitored position error to detect gas jet leaks
and caused jets to actuate to attempt to clear
the leak.

Monitored the Canopus star tracker and initiated
sequences to prevent damage to the tracker and
acquire ~r maintain star reference after stray
l1ight e. osure.

Extracted selected data from the telemetry
stream for use in fault protection algorithms.
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TABLE [111-6 [Sheet 1 of 2)

Voyager Spacecraft Fault Management Algorithms

NAME

FUNCTION

Command Loss
(CMDLOS)

Radio Frequency
Loss (RFLOSS)

Power Check
(PWRCHK)

IRIS Power
(IRSPWR)

AACS Power Code
Processing
(AACSIN)

CCS Error
(ERROR)

Tandem and Turn
Support (TRNSUP)

Corrected a failure to receive ground command,. A
failure was assumed whenever a preset number of
hours had elapsed since the last valid command received.

Restored either S-Band or X-Band (or both) downlinks
subsequent tc a failure of either an exciter or
transmitter,

Configured the spacecraft to a safe power state in the
event of an undervoltage condition, a main-to-standby
inverter switch, or a CCS tolerance detector trip.

Selected the infrared interferometer spectrometer
and radiometer subsystem (IRIS) standby redundant
heater unit if the prime unit failed.

Allowed the CCS to respond to power codes from
the AACS. This was a “hand shake" interface that
allowed the CCS to monitor the health of the AACS
computer and respond to anomalous conditions. Was
also used by the AACS to ccmmand redundant or
peripheral hardware during normal operation.

Responded to anomalous CCS haraware and software
conditions ana placed the CCS in a known, quiescent
state awaiting ground action.

Verified the integrity of the CCS and AACS priovr to
critical functions including turns and trajectory
correction maneuvers.

Heartbeat Generator Provided a heartbeat check of the AACS-CCS and
Self Test communication link. Also acted as a performance
Control (HEARTBEAT) check on the AACS processors.

Omen Power Code (UMEN) Issued a power code to CCS indicating detection of
a serious fault in AACS. Resulted in saving sub-
sequent power codes for ground analysis. Also
inhibited certain functions such as trajectory
correction maneuvers.

Celestial-Sensor Monitored operations of the sun sensor and Canopus

Fault Detection/ star tracker. On detection of error, triggered the

Protection reacquisition of celestial references and swapped
AACS redundant elements.
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TABLE I1[-6 (Sheet 2 of 2)

Voyager Spacecraft Fault Management Algorithms

NAME

FUNCTIUN

Power Supply Fail

Memory Refresh Fail

Trajectory Correction
and Attitude Propulsion
Unit Failure (TCAPUF)

DRIRU Fault Protection

Scan Platform
Slew Fault
Uetection/
Protection

Command Parity
Fail

Command Sequence
Fail

Bad/Mo Echo
Response

Turn Completa and
TCM Turn Abort

Self Test

Catastrophe
Handler/Processor
Faults

Checked power monitors in the AACS and initiated a
swap of redundant elements if a fault was detected.

Monitored tne ;lated wire memory cell refresn
performed by the AACS processor. Initiated a
processor swap if the refresh process failed.

Performed thruster pulse rate anc spacecraft angular
position error checks to detect failures in thrusters.
Switched redundant thrusters or AACS interface or
processor units if a fault was suspected.

Monitored gyro (DRIRU) warmup and compared outputs
during operation to determine faults. Swapped
redundant gyro and AACS elements if a gyro fault
was detected.

Software timer in AACS to detect slews which exceeded
time allowed and prevented actuators from driving
against stops. CCS response depended on frequency

of fault occurrence.

Performed a parity check in AACS on commands from
CCS. If a parity error was detected, transmitted a power
code to CCS and did not respond to the commands.

Protected againct false commands to AACS/CCS interface
and AACS processor and interface unit operation.
Persistent absence of power code echoes resulted in
swap of AACS elements.

AACS power codes were echoed by CCS to test AACS/CCS
interface and AACS processor and interface unit
operation. Persistent absence of power code echoes
resulted in swap of AACS elements.

AACS aborted any turn if the sum of pitch, yaw and
roll errors exceeded b degrees. Also rejected any turn
commands if a turn was in progress.

AACS conducted a self-test of the processor on
request from CCS. If unsuccessful, a processor
swap was ordered.

AACS initiated interface unit and processor swaps if

earlier switch to a redundant elenent had failed to
correct a fault.
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2.2 AUTONOMOUS NAVIGATIUN

An autonomous navigation subsystem should be capable of performing on
board the spacecraft all of the navigation functions currently executed on the
ground. These functions include determining the actual orbit of the spacecraft
(knowledge), predicting future positions and events, and performing trajectoury
correction maneuvers (control). The measurenent systems are typically
self-contained.
2.2.1 Functions Supported

In theory, Autonomous Navigatior can support the tollowing mission
and spacecraft functicns:

Instrument Pointing

Orbital Stationkeeping

Avoidance Maneuvers

Communications

Attitude Control

Uata Annotation

Urbital Event Prediction

Anomaly Detection

Relative Vehicle Control
These functions are described in more detail in the following parayraphs
2.2.1.1 Instrument Pointing. Using the knowledge of the spacecraft's
location relative to the tarth and tne location of celestial objects (Sun,
Moon, stars), an Autonomous Navigation system can coimpute the direction to a
specified object as a function of time. The system can also determine if an

observation is feasible. Tnis enables both high-level comaanding capability
and automatic sequencing.

2.2.1.2 Urbital Stationkeeping. Certain missions require that the space-
craft maintain a specified orbital location. Geosynchronous stationkeeping
provides the clearest requirements, however, other missions such as those
requiring a particular Sun phase angle have similar requirements. The know-
ledge and predictive capabilities of an autonomous navigation subsystem enables
the computation of the propulsive maneuvers required to maintain the required
trajectory. Sufficient information is available to allow for automatic
execution of the maneuvers.
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2.2.1.3 Avoidance Maneuvers. Avoidance maneuvers include the generdl

class of maneuvers which are executed based on some command external to

the Navigation subsystem. Given this external command, the Navigation subsystem
can compute and execute the desired maneuvers. Knowledge of the maneuver

allows the updating of the onboard orbit knowlecge and continued execution

of the navigation mission functions.

2.2.1.4 Communications. In addition to providing antenna pointing infor-
mation, an Autonomous Navigation subsystem can also compute ralative velocity
data (Doppler shifts) in support of narrow bandwidth communications. In
other situations, the Navigation subsystem can provide orbits to enadle
ground tracking station pointing and timing prediction.

N

2.2.1.5 Attitude Control. Precision Earth relative attitude control may
be limited by the accuracy of existing tarth sensors. Significant increases
in precision may be obtained by using stars to estaplish an inertial reference
coupled with an onboard spacecraft ephemeris which relates the inertial
pointing to tarth pointing.

2.2.1.6 Data Annotation. OUnboard knowledge of the spacecraft trajectory

at the times data were taken allows for location annotation on the data

prior to transmission to tarth. For example, latitude and longitude grid

lines may be automatically added to a weather picture prior to transmission.
This capability can not only decrease ground costs and processing time, but
also enables immediate use by the user. Tnis application is beinyg demonstrated
by a Landsat-D experiment using the Global Positioning System (uPS).

2.2.1.7 Orbital Event Predictions. Knowledge of the spacecraft trajectury
plus the availability of a trajectory propagator in an Autonomous Navigation
subsystem enadles the prediction of a wide range of orbit dependent events.
Typical examples include sola~ and lunar occultations, station acquisition

and loss times, and picture opportunities. Automatic time updating of onboerd
sequences could significantly improve mission data return.

2.2.1.8 Anomaly Uetection. In addition to estimation and control of the
spacecraft orbit, an Autonomous Navigation subsyscem can estimate other paraweters
such as sensor biases and maneuver magnitudes and directions. by comparing

the estimated values to the predicted values, independent detection of certain
anomalies may be achieved. This capability contributes to the overall autonomy

of the spacecraft operation.

2.2.1.9 Relative Vehicle Control. The control of the relative motion of
two or more vehicles 1n close proximity requires the application of Autonomous
Navigation subsystems since the characteristic times of the wotion are small
relative to the yground reaction time. This type of navigation and control

is required for both independent vehicles and vehicles with non-rigid
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connections. The navigation sensors for these applications will, in gyenerdl,
be different from those used for single vehicle applications and are not
discussed in this document.

2.2.1.10  Functional Hierarchy. A functional hierarchy for stationkeeping
service is shown in Figure IT1-8. Ground based tracking support and functions

that might be allocated to propulsion and attitude control subsystems are
included as well as those appropiiate to navigation. The set of functions
directly applicable to an Autonomous Navigation subsystem lie orimarily
under the "Direct/Control Urbital Position" function. These are:

(1) Process navigation sensor wmeasurements.

(2) Determine spacecraft orbital parameters.

(3) Propagate the spacecraft ephemeris.

(4) Schedule and compute trajectory control maneuvers.
(5) Generate maneuver commands.

(6) Verify navigation performance.

An additional important function not covered is to provide executive control
of the overall navigation subsystem.

Functions (1), (2), ana (3) accomplish the ephemeris maintenance
service. While these functions are nignly interrelated, certain options exist
for the implementation of each function.

The following sections provide a generalized description for an
Autonomous Mavigation subsystem, along with the system level requirements,
and discuss in some detail the first five of the above functional categeries.
These latter sections present more detailed functional descriptions along
with various implementation options. Tne sixth functional category, “Verity
Navigation Performance”, has received relatively little analysis to date and
will be discussed at only the top level. Continuing development within the
Autonomous Spacecraft Program should provide adaitional data in this area.
The final section presents a brigcf description of the Autonowous Navigation
efforts to date along with a bibliography of reference papers.

2.2.2* Autonomcus Mavigation Subsystem Uescription

Figure 111-9 presents a block diagram for a yeneric Autononous
Navigation subsystem. Depending upon the application not all of the elements
may be required. There are also severzl methods for interconnecting the
varicus elements of the system. For example, the measuresent data could be
routed through the Executive Controller rather than directly into the navigation
subsystea. Tne components are:

"y J. B. Jones
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2.2.2.1 Navigation Measurement Sensors. These instruments obtain the

data required for navigation. They may operate continuously or upon cousnand
and they might be shared with the Attitude Control subsystem. Typical sensors
include Horizon Scanners, Sun and Star sensors, Charge-Coupled Device (CCD)
camerds, radars, and radio signals. The sensor section (Z.2.4) presents

more detailed data. The selection of the appropriate sensors depends upon

the mission, the spacecraft design, and the accuracy requirements.

2,2.2,2 Data tditor. Prior to use in the orbit determination process,
the sensor data must be edited to eliminate erroneous points and possibply
caiibrated to account for sensor characteristics. In addition to improving
the estimation process, data from the editor supports detection and isolation
of failures within the navigation systenm.

2.2.2.3 Urdit Determination. This is the heart of the navigation subsystewm
where the incoming data 1S used to improve the knowledge of the spacecraft
trajectory. A wide range of algorithms based on estimation theory is

available and the selection depends upon the particular application.
Development of fail-safe hands-off algoritivas may be a significant challenge.

2.2.2.4 Trajectory. The trajectory propayator services both the ordit
estimator and maneuver planning segments in addition to producing unigue
output data. Commonality insures consistency between the various segments.
Again, a wide range of techniyuec is available, and selection depends upon a
detailed analysis of the mission characteristics and accuracy requirements.
The trajectory segment pruduces output which includes the predicted spacecraft
flight path, predicted orbital events, data annotetions, and also includes

the solar and lunar ephemerides.

2.2.2.5 Maneuver Planning. Within this block it is first determined if a
maneuver is required and, 1f so, the time, direction, and magnitude of the
maneuver is computed. Under some conditions a single orbit correction nay be
accomplished with wore than one maneuver. Any other computdtions related to
translation nmaneuvers are also computed in this block. The output is the
“desired" maneuver(s) and may account for only a portion of the constraints,
Tne detailed algorithms are both mission and spacecraft dependent.

2.2.2.6 Maneuver Commmands. In this segment the previously generated
maneuvers are translated into specific maneuver commands which may be executed
by other spacecraft subsystems. A separate segnent is defined since this
segment is completely spacecraft peculiar. Tne functions assumed by this
segment depend upon the overall autonomous architecture.
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2.2.2.7 Clock. Figure I11-9 assumes that the clock is external to the
Navigation Subsystem, however, for some applications it may reside within the
Navigation subsystem. In any case the Navigation subsystem places strong
requirements on the clock in terms of both accuracy and continuous
timekeeping. Accuracy requirements range from 10-° parts per day up to

10-11 ard beyond. Many applications do not require highly advanced

clock technology.

2.2.2.8 Executive. The executive segment provides three functions:
coordination of the internai operation, communications with the outside world,
and inter-segment fault isolation and detection. Historically, executive
programs have been the most difficult segments to design, implement and
validate.

2.2.2.9 Interfaces. In addition to responding to ground cowmands and
providing telemetry data, a Navigation subsystem will have interfaces with:
(1) Attitude Control - pointing and maneuvers
(2) Propulsion - maneuvers
(3) Electrical - orbital events, pcinting and maneuvers
(4) Uata - data annotation

(5) Payload - state vectors

2.2.3* System Level Requirements and Considerations

A number of mission and system related features drive a navigation
subsystem design. These include:

(1) Mission Requirements

(2) Spacecraft Design Requirements

(3) Characteristics of Uther Spacecraft Subsystews
(4) Operational Environement

(5) Ground System

¥y J. B. Jones
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2.2.3.1 Mission and System Requirements. The most iwmportant driving
factors are the Mission Requirements. They will determine many of the
functions of the navigation subsystem and the level of perforimance. For
example, one mission may require only the generation of spacecraft ephemeris
while another may require the inclusion of full maneuvering capability. Tne
mission requirements will also lead to the seiection of particular crbital
configurations which in turn may place constraints on the sensors which may
be utilized. Geosynchronous orbits impose different constraints than do low
polar orbits.

2.2.3.2 Spacecraft Design Requirements. Since an autonomous navigation
subsystem (s/s), by definition, operates entirely onboard a spacecraft it

must be designed in conformance with the overall spacecrait design requirements.
These design requirement will place requirements on both the nominal and
fault-tolerant operation of the Navigation subsystem. System requirewents

will dictate such factors as single point failure requirements, power considera-
tions, and the fault detection/correction philosophy. The interfaces between
the Navigation subsystem and the other subsystems is typicaliy controlled at
the system level in order to assure consistency and compatiopility. The
requirements for both subsystem level and system level test and validation

are also specified by the system requirements.

2.2.3.3 Subsystem Characteristics. The third area which impacts the
design of the Navigation subsystem is the characteristics of the other space-
craft subsystems. The primary interactions occur with the Attitude Control,
Propulsion, TT&C, Power, and, possibly, Structure.

Attitude Control interfaces may arise in 4 number of ways. First
the sensors may be shared. In general, the requirement placed on the sensors
by the two subsystems will be different. Further, the protocol for sensor
fault detection and correction must be clearly established and understcod in
order to preclude “deadly embrace" conditions in which two or more subsystems
may be each awaiting a response from the other/others. Secondly, the naviga-
tion measurements may be sensitive to spacecraft attitude. And finally,
certain attitude control systems may use the orbital ephemeris data to achieve
accurate pointing. In this latter case, not only are requirements placed on
navigation accuracy, but the operating characteristics must be consistent.

Propulsion/navigation interactions occur whenever propulsive
maneuvers are conducted under autonomous control. In many cases, the
Navigation subsystem generates the maneuver commands which are then executed
by the Propulsion subsystem. In addition, the Navigation subsystem needs to
have knowledge of any maneuvers which have beer accomplished. For certain
high capatility Navigation subsystems, it is also possible for the Navigation
subsystem to support Propulsion subsystem failure detection.

The TT&C and power interfaces are the usual subsystem interfaces.
Structures interfaces may arise due to sensor field-uf-view requirements.
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In addition to these interfaces, which will occur on most spacecraft,
some spacecraft may carry payload instruments or sensors which can supply
navigation data. In these cases, tke navigation must be carefully designed
in order to interface efficiently and not degrade the primary payload functions.

2.2.3.4 Operational Environment. Operational Environment refers to

both the orbit of the spacecraft and to the attitude control characteristics.
Relative to the orbit, sensors which are appropriate for low altitude
spacecraft may not yield a sufficient accuracy for high altitude spacecraft.
O1liptical orbits impose special requirements on both sensors and algorithms.
Functions such as the trajectory function are sensitive to the orbit. The
trajectory modeling complexity varies with both the orbit and accuracy
requirements.

The Navigation subsystem may be affected by the attitude control
characteristics. Obtaining the required sensor data will Le much easier on a
very stable spacecraft as opposed to one with a dynamic attitude. Spinning
spacecraft will require many different considerations.

2.2.3.5 Ground System. As with any other subsystes, the Navigation s/s
must interface efficiently with the ground control system. In order to
provide satisfactory ground control, data must be transmitted on both the
inputs and outputs of the Navigation subsystem. Sufficient data should be
transmitted to enable ground validation of the space system performance
through reconstruction of the space suhsystem function.

2.2.4* Measurement Sensors for Autonomous Navigatior

The navigation computer must be supplied data from three classes
of sensors: inertial references, near-body sensors, and clocks. Fig. 1II-1V
illustrates the situation and lists some possible ways of accomplishing
the required sensing. Certain generalizations can be made based on tne
current state of development of the various sensors.

2.2.4.1 Inertial Sensors. The most common attitude reference is the
celestial sensor. This determines directions in inertial space by sighting
on celestial objects sufficiently distant from the spacecraft that they may be
regarded as fixed. Star sensors and sun sensors both fall in this class.
Strictly speaking, no celestial vuject is fixed since all stars show the
phenomonenon of aberration as a result of this motion of the observing
telescope, but this has a small affect on orbit determination, amounting

to +20 arc-sec for orbital motion of the earth and to + 5 arc-sec for a low
satellite. Likewise, with a sufficiently sensitive sun sensor, the apparent
motion of the sun against the background of fixed stars as a result of the
motion of the spacecraft could be measured, and the sun wruld become a near
object rather than a celestial object. Although this motion is larger than
the aberration for typical earth-orbiting spacecraft, it is still too small

¥By E. F. Tubbs
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to limit most practical navigation. Both stellar aberration and solar parallax
can be corrected for by computation if necessary, and this places the sun

and stars firmly in the category of celestial objects suitable for attitude
reference.

One question remains with respect to celestial reference: How
good a correction can be made for the effect of proper mction? The Fourth
Fundamental Catalogue FK4. which was prepared by W. Fricke, A Koppf and
coworkers in 1963, contains 1535 fundamental stars brighter than a visua:
magnitude of 7.5 and distributed over the sky with fair uniformity. Tnere
is also a supplement containing 1987 stars. This will be superseded by FK5
which is expected to contain about 3%u! stars to 4 magnitude of Y.2. Althcugn
the uncertainty of the proper motions will vary from star to star, the average
uncertainty is estimated to be about 2 milliarc-sec/year for stars in FK4,
Therefore guide stars taken from FK4 can be corrected for proper motion
with sufficient accuracy. There is a general cor 2ction to reduce the courdinate
system of the Catalog to an inertial frame. Various determinations of these
corrections have yielded different results, but the results are on the order
of 5 millierc-sec/year with uncertainties of 2-3 milliarc-sec/year. These
corrections are only of importance in situations requiring extreme accuracy
in the determination of spacecraft attitude such a; a relativity experiment.

The other attitude references listed in Fig. [II-1U are what
might be called internal ones, in that after initialization they do not require
the observation of external objects. Mechanical gyros are used in present-
day spacecraft only at critical times such as orbit insertion as they do not
have the life to allow continuous operation on long-duration missions.
Although the wear-out mechanism is different, the same can be said of the
laser gyro. At the present time the fiber-optic rotation-sensing devices
offer great promise as a continuously operating internal reference, but are
still in the laboratory.

The configuration used for celestial sensing will depend upon the
spacecraft ana the mission. Typical configurations are two or three strap-
down star sensors or a star sensor and a sun sensor for three-axis stabilizea
spacecraft. With a spinning spacecraft the sensor takes the form of some
type of scanner. One such is the V-slit scanner, whicn senses tne time of
passage of known stars across the two legs of the "V*,

In some situations it may not be necesary to have complete inertial
reference. If it required that only the in-p'ane motion of & satellite be
controlled, it is sufficient to have a celestial sensor aligned in or near
the orbital plane. Likewise if cnly the orientation of the orbital plane must
be controlled, the most convenient arrangement is to have a sensur directed
towards a "pole star" of the orbit.

The choice of strap-down star sensors is limited at the present
time. The only one imnediately availaole is the NASA Standard Star Tracker
built by Ball Aerospace. It uses a magnetically focused and deflected imaye-
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dissection tube. Its specifications are given in Table Ill-7. Various
imaging star trackers using solid-state detectors are under development.

The Air Force Multimission Attitude Determination xnd Autonomous Navigation
(MADAN) program is developing a tracker based on a radiation hardened charge-
coupled device (CCU) built by Hughes. NASA (Ames and JPL) has Jeveloped a
prototype fine-guidance sensor for the Shuttle Infrared Telescipe racility
(SIRTF) based o» an RCA CCO which, although not strictly a star tracker, is
close to a startracker configuration. The RCA CCU is not radiation-hardened.
At this writing the spacecraft designer can consider only the NASA siandard
as an available item. Its accuracy of lU arc-sec over a field of view is
only achieved by a careful ground calibration which yields 190 calioration
coefficients. Once this is done, it seews to perform satisfactorily. The
Magsat mission operated with redundant attitude-determination devices,
including two star trackers. A comparison between the direction as
determined by one of the trackers and the directions deteriined by the

TABLE [1]-7
NASA Standard Star-Tracker Functional Characteristics

NASA Standard

Parameter Value

Photo-Sensor Type linage dissector, ITT F4UlZ2 KkP

Spectral Response $=-20

Lens 70mm, f/1.2

Window Fused uartz, 0.3 in. thick

Field of View 80 x 8o

Sensitivity .7 visual magnitude, Class GOV

Vehicle Rate 0.39/sec

Search Mode Raster Scan

Acquisition Time 10 sec

Track Mode! Unidirectiona! cross scan

Output Data Rate 10 updates/sec each axis

Track-Scan Period 100 msec total for both axes

Noise-Equivalent Angle 16 arc sec maximum

Total Accuracy 10 arc sec (1 ) over total field

Analog Outputs Star magnitude, instrument temp.

Digital Outputs Two 16-bit words giving star
position (12 bits for each axis)
and status

Size 6.5 x 7 x 12 in basic tracker

Weight i7 1bs. only
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second tracker in combination with the sun sensor shows a variation in the
difference of 5 arc-sec rms. ODrifts in alignment correlated with temperature
were observed during the Magsat mission. Part way through the mission a
heater og one of the trackers failed. This caused a shift in direction of 6
arc-sec.

Although CCD trackers are not available as flight-qualified devices
at the present time, their performance can be projected from the results of
laboratory and field tests. The advantages of the CCU are that the geometry
is fixed by the physical structure of the detector and they are much less
sensitive to magnetic fields. Tne uncertainty in star location is typically one
part in 10% of the field of view. A CCD tracker with the same 8° field as
the NASA standard would have an uncertainty of 3 arc-sec without calibration.
The sensitivity depends upon the collection efficiency of the optics. A
reasonable estimate is useful operation at a visual magnitude of 6 or 7.3

The situation with respect to sun sensors is significantly different.
The sun sensor of choice for a 3-axis stabilized spacecraft is the NASA
standard made by Adcole Aerospace Products. It covers a field of view of
640 x 640 so that a total of six are required to cover a full circle.
tach sensor head contains coarse and fine reticles for measurement of sun
angle in two orthogonal directions. The specified accuracy of the sun sensor
is +6U arc-sec within a 300 cone angle. The repeatability is specified as
+30 arc-sec. The experience with Magsai indicates that with yround calibration
and a significant amount of onboard calculation a resolution of 2 arc-sec and
an accuracy of 12 arc-sec rms could be obtained. The experience with Magsat
also showed a fixed discrepancy of 55 arc-sec between the ground calibration
and the flight measurements in one axis only. The origin of this was not
determined, but it indicates that provision must be made for in-flight
calibration of the sensor pointing directions when high accuracy is reguired.
In addition to Adcole sun sensors a wide variety of sensors has been
built by TRW, Honeywell, Lockheed, Ball Brothers, Hughes, and Bendix.

2.2.4.2 Near Body Sensors. Uf the various rear-body sensors, the edrth
sensors are the most highly developed with substantial flight experience with
both static and scanning devices. The available earth sensors detect the
horizon in either the 14-16 micrometers CUz band or in the 22-40 micrometers
H20 band. Sensors operating in the CU, band typically use germanium

optics while those in the H20 band use silicon. Uletection is done with
thermal detectors: thermocouples, thermopiles, or bolometers. Sensors are
manufactiured by Barnes Engineering, Ithaco, TRW and Quantic lndustries.

The Quantic Industries Model 51UU serves as an example of a static
instrument. It is a radiation-hardened instrument designed to operate at
geosynchronous altitudes. It senses pitch and roll using radiation-balance
on eight thermocouples and operates in a tand from 22 to 33 wmicrometers. In
addition to the horizon-sensing optical system it nas a separate system to
sense the presence of the sun in the field of view of the detectors. This
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sun-presence system automatically shuts down any of the thermal detectors

directly affected by solar radiation. The sensor has a linear range of +2

degrees and a saturated signal range of *17°.  The uncertainties at geosynchronous
altitude are given in the following table.

Source of Uncertainty 3 sigma
Electronic noise 0.002 deg.
Electronic offset ¢.005
Long-term drift in detectors U.015
Changes in housing temperatures 0.008

RSS 0.018
Alignment and calibration U.030

RSS .
Horizon variations 0.622

RSS 0.041

The Tine of horizon scanners made by Ithaco serves as an example
of the scanning class of sensor. It uses germanium optics and an immersed
bolometer as a detector. A wedge which gives a deflection is rotated in
front of the lens tc give a conical scan. A typical configuration places a
pair of sensors on the spacecraft with the axis of the detectors aligned
with the + and - directions of the pitch axis. Each sensor generates a square
wave as the scan passes on to the disc of the earth. The phase of the wave
is a measure of pitch attitude, while the duty cycle is a measure of changes
in roll. "Peaking circuits" are required to make the rise and fall in the
square waves as independent as possible of variations in horizon temperature.
These sensors may be used from 150 km to above geosynchronous altitudes.

It is necessary to make correction for variations in the horizon
location with season and latitude as well as for the flattening of the earth,
Once this has been done there remain random effects given in the following
table:

Source of Uncertainty _ 3 sigma at 1000 km
Roll Pitch
hHorizon random-radiance effects 0.922 deg 0.028 deg

Electronics drift U.015 0.ul5
Optical alignment 0.02 0.02
Noise (one sample) 0.034 0.047
(four samples average) 0.017 0.024
Quantization error 0.005 0.00%
RSS (one sample) 0.048 0.060
(four sample average) 0.037 0.U46

Landmark tracking has been the subject of several studies over
the past 10 years. Some of the possibilities which have been or are being
investigated are listed in Fig. III-10. They are the optical tracking
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of landmarks, the tracking of radar transmitters and the use of synthetic-

aperture radar (SAR). The optical-tracking investigations were concerned with

unknown landmarks, while the radar studies have been concerned with knuwn -
landmarks.

Both TRW4 and Honeynell5 made studies of the optical tracking
of unknown landmarks. The TRW work resulted in an engineerinc model of 4
gimballed tracker using an image dissector tube as tne de:ector. Tiis system
was carried through the laboratory-test nhase. Tne perforwance was cne sample
every 10 sec with a gimbal bias of 4 arc-sec and a random error of similar
size. The Honeywell system utilized two body-fixed silicon-matrix photo
detectors to measure the landmark motion. This system carried the sensor
assembly through the critical component development phase. Performance on the
order of 1 kin for low altitude orbits was projected.

The tracking of ground-based radars at known locations has been
studied by IBM.® The system used interferometric techniques to provide
accurate tracking of radar landwarks. Tne center frequency is 3 GHz which
provides all-weather operation and limits ionosphere refraction to 4 arc-sec.
This program proceeded through the critical-component development phase, and
predicted accuracy levels ranged from 68 meters (1 sigma) for the Molniya 12 hr. -
orbit to 9UU meters for a synchronous orbit. In low earth orbit the system
can also provide attitude information to +1 arc-min without the use of
celestial sensors. -

A possible approach to known landmark tracking {- synthetic
aperture radar (SAK). Such a system would use SAK imayges in cowpination with
a star or sun sensors to provide naviyation data. Beyinning wita an initial orbit =
estimate, the system first selects a landmark and coissands a navigation image.
At the appropriate time the SAR takes the image which is then processed. In
parallel, the navigation system selects the proper map from itc file and
perforns the necessary rotation and scaling. Tne updated map is then correlated
with the SAR image and the navigation data is extracted. Landmark locations ‘
should be easily determined to 100 meters, and with additional work, including =
possibly inflight calibration, determined to lU meters or less. Thus for
reasonable SAR range accuracies, navigation accuracies to ZUU meters or less
are possible. A fine-tuned system might produce accuracies in the 1lU-20
meter region for orbital altitudes in the ranyge of ¢5U to lUUU km. No work
is known to be under way in this area at this time.

The remaining near-body tracking possibility is the moon. There
are two sensors suitadle for moon tracking under development at the present
time. The first of these is the Space_Sextant being developed by Martin-
Marietta for Air Force Space Division.’ The principle of operation is the ‘
measurement of the angle between the limb of the moon and a known star Dy -
measuring the angle between two telescopes, one tracking each object. It can
also measure attitude by measuring angles from known stars to refcerence
surfaces in the sensor. The mechanical arrangement of the sensor ,laces the
two telescopes in a common plane and orients this plane with a ygimbal assewoly
to allow the desired measurement. A spinning wheel concentric with the
telescopes injects a collimated timing light into each telescope. Tne timing
of these light pulses measures the angle between the telescopes. There is a =
wide field of view used for acquisition and a narrow, high-resolution field
for the fine measurements. Tne resolution ot the angular measurements is |
about U.15 darc-sec and the accuracy is of the order of one darc-second. 4
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The limb-tracking telescope is driven by the servo system tu that
part of the 1imb normal to the star direction. The computation must correct
for the radius of the moon and for significant variations in the limb as a
result of topographic veriation. The result is a measurement of the anyle
Letween the center of mass of the moon and ihe star. Une measurenent locates
the spacecraft on the surface of a cone with its apex at the moon and axis in the
direction of the star. A second measurement to a different star establishes
a seconc cone. The intersection of the two cones establishes a line of possible
positions to the spacecraft. A sequence of lines of position and tneir times
enables the spacecraft position to be established. with the aid of an
onboard estimation filter it is projected that Space Sextant can yield
positioning tn 250 meters, 1 sigma, and attitude to 0.6 arc-sec, 1 sigma,
in any orbit in the earth-moon systewm.

The recently developed technology in charge-coupled device (LCv)
imaging detectors, which was discussed above in connection with star trackers,
also has application to near-body sensing. An example of work in this area
is the Optical Navigation Sensor under development at JPL for NASA.3 Tnis is
an astronomical optical-navigation instrument employing single-frame, slow-
scan television imaging. It uses a commercial CCD area-array detector in
combination with a microprocessor whicn extracts near-body and background-
star centers from each frame. Its application to lunar tracking is facilitated
by the well-defined lunar limb,

For 1imb finding, each line is scanned for groups of pixels which
both exceed a specified thresholc and exhibit a rapid change of intensity.
Groups of pixels satisfying these criteria are stored for later processing.
Since these pixels are the only ones stored, most of each scan line is
discarded, and a data compresssion of IU to 1 is achieved without loss of
metric accuracy. After the limb-finding operation, a smail band of pixels
outlining the limb and containing some terminator points will nave been
stored. The processing then removes obviously bad points and terminator
points and makes a preliminary estimate of the center. Limb points are then
computed for eacn line by finding the point where the directional derivative
is greatest in the direction of the estimated center. These limb points are
then fitted with an ellipse using linear mean square error estimation. lhe
lunar center is then defined as the geometrical center of this ellipse.

The centerfinding can be done to an accuracy of +3 micrometers
on the CCU. For a 15U mm focal length lens this translates into 14 arc-sec
and is proportionaliy smaller for lenses of Tonger focal length. A breadbuard
of the Uptical Navigation Sensor is under construction, and field tests of
the instruments on luner centerfinding are planned.

2.2.4.3* Clocks. As previously noted in Figure 111-1u, there are three

types of oscillators currently available for use in an onbodard clock; quartz,
rubidium and cesium. Of the three, the quartz technoloyy is the best developed,
with a long history of quartz oscillators culminating in a currently availaole
and flight-proven high stability oscillator. Tha rubidium and cesium technoloyy
is newer, with the first generatian ot tlight oscillators beiny used in the
Global Positioning System Navstar satellites. Tnese latter osciilators are
expected to be fully flight-qualified in the near future.

*By J. B. Jones
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Considering only the navigation requirements, the choice depends
upon both the required navigation accuracy and the required period of autonomy.
For example, a mission with a 10-meter navigation accuracy requirement over
a 6 month autoromy period will require a much more accurate clock than a
mission with a 1 km accuracy requirement over a 2 week period.

In order to guantify the relationship between oscillator accuracy
and navigation accuracy, we may use the following first-order expression:

P

Vot

Ve 85 + 8r (8f)t + 172 (8d)t?

where P is the position error and V. the orbital velocity. The timing error,
6t is separated into the following types of errors:

8s = the error in initially setting the clock

6r = the error in reading the clock time

6f = the error in the knowledge of the oscillator frequency
8d = the erro~ in the knowledge of the frequency drift

Table III-8 presents typical values for the various error
terms for the three types of oscillators. These ranges are fairly conservative
and improvement may be possible with an optimized system. Assuming that all
of the clock errors are independent, Figure I11-11 presents the range of
navigation position uncertainty due to clock error for the upper and lower
bounds given in the Table and autonomy periods up to 180 days. A low altitude
orbit (250 km) is assumed. For higher altitude orbits the error reduces by
the ratio of orbital velocities. At geosynchronous altitudes, the errors are
reduced by a factor of 2.7. As may be seen the lower bound of the errors is
determined by the set and read errors. The frequency knowledge error and
frequency drift errors for the cesium oscillator do not significantly contribute
to the Navigation error.

The question of clock autonomy has not been considered in detail,
however, preliminary considerations indicate that it would be desirable to
operate three clocks simultaneously in order to detect and isolate internal
clock failures. Further, to protect the clocks from external power fluctuations,
the clocks should be provided with backup power supplies, i.e., batteries.
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Table III-8. Clock Zrror Characteristics

OSCILLATOR TYPE

ERROR QUARTZ RUBIDIUM CESIUM
5s - INITIAL ERROK 1074 101073 sec
IN CLOCK
SETTING
8¢ - ERROR IN 1073 10 1074 sec

READING CLOCK
TIME

2 -12

8F - FREQUENCY 010" { 10" 10107! 10'210 107!

ERROR,
SEC/SEC

0%010" | 10 "1010712 | «<i0713

dd - FREQUENCY 1
DRIFT,

PARTS,/DAY
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2.2.5* Prucess Measurements (Data Conditioning)

Before measurements are passed to the orbdit determination subsystem
for state estimation it is essential to scresn the date to eliminate occasional
“dlunder points” and, for most applications, to perform other editing,
calibration, and performance-monitoring fuactions as well. Inis combination
of functions is sometimes called data conditioning.

2.2.5.1 uirements on Data Conditioning. Requirements on data conditioning
are strongly miss{on and spacecra nt, but in general the followiny

functioral requirements are applicable:

(1) Prevent obviously bad measurements from reaching the state
estimation function.

(2) Eliminate excessively redundant state estimation computations
by appropriate data selection and/or compression,

(3) Apply calibrations to raw measurements (if available and not
applied elsewhere) to enhance accuracy.

(4) Provide audit data on orbit deterwmination and sensor perfornance
as the basis for anomaly detection.

*By J. P. McDanell and K. D. Mease
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2.2.5.2 Identification of Bad Data. Bad measurements can be identified
by testing pre-fit observation residuals for consistency with a predicted
residual viriance. Computation of the predicted variance is straightforward
using the state covariance (or equivalent factors) and observation partial
derivatives from the orbit determination process and the observation noise
variance. If the ratio of the squared residual to its predicted variance is
greater than a specified threshold value, the point is deleted. Since the
main purpose of this test is to eliminate occasional dlunder points, the
threshold should not be set too low. Typical values mignt be in the range
of 9 to ¢5> (where a value of Y corresponds (0 a 3 siyna test and 45 is a b
sigma test).

Another wmethod of identifying bad data that should not be overlooked
(when applicable) is a direct consistency check between redundant measurements.
The comparison may be between redundant sensors of the Saiie type or between
sensors of different types measuring related quantities. If the measurements
do not agree within allowable limits, additional tests (e.g., on residuals)
will be required to determine which is correct.

2.2.5.3 Performance Monitoring. In conjunction with the screening of
measurements some useful performance monituring can take place. T7he average
residual value, the residual sum-of-squares, and the nuaber of points failing
the screening test in a particular time period can readily be wmonitored and
used to flag potential anomalies so that appropriate corrective action may

be initiated at the system level. In general, anomalous residual behavior
(e.g., a large bias on several successive measurements) may be due either to
sensor malfunction or divergence of the orbit determination process. The
particular diagnostic criteria and corrective actions to be taken are
appiication dependent.

2.2.5.4 '.ta Compression. When highly redundant measurements are available,
it may be wasteful of computer resources to perform a complete state estimate
update with each measurement. Un the other hand it is aesirdable to take
advantage of the additional reliability inherent in redundancy. Thus some

form of data compression or averaging may be appropriate. Usually this
involves a simple arithmetic averaging of several independent measurements.

[he state estimator then tredats this average as a single measurenent with
variance inversely proportional to the number of original medsurements.

2.2,6% Determine Spacecraft State Vector

The orbit determination (UU) function maintains and continually
corrects an estimate of the spacecraft state vector (position and velocity of
"~ orbital elements) based on information inherent in the measurements provided
by the sensors. The 0D process is primarily a data-fitting process consisting
of tre following steps:

(1) Predicted observable values are computed at times whicn

correspond to the acquisition times of actual realized
observations (measurements).
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(2) Partial derivatives are computed, which relate how changes in
the predicted observadles at each time are affected by changes
in the spacecraft state and (in some cases) other parameters
of the spacecraft motion.

(3) The difference between each observation value and its predicted
value is computed.

(4) These differences, or data residuals, are reduced usiny the
associated partial derivative matrix, to an estimate of the
spacecraft state, and if desired, the associated trajectory
model parameters. These adjusted parameters then yield the
trajactory (or orbit) which most closely predicts the observed
data; i.e., drives the sum of the squares of the residuals to
a minimum value.

2.2.6.1 Reguire-ents on 0D Function. Design and implementation of the LU
function may characterized as a tradeoff of computational requirements
against accuracy and reliadility. Tne computational requirements for 0D are
consideradle, even in relatively simple systews, and typically are a major
driver on the capacity of the onboard computer. OUn the other hand, the
performance of the navigation subsystem, while ultimately limited by the
sensor accuracy, may be artificially limited by the choice of models and
algorithms in the OD function.

Clearly the specific requirements on the UD function are wmission
dependent, but the following general statements can be made:

(1) The computational requirements of the OV function st be
consistent with the numerical precision and speed of the
onboard computer.

(2) The compietenecs and complexity of the wodeling must be
consistent with the sensor accuracy.

(3) The data fitting process must be tolerant of unmodelea dynamic
effects, systematic weasurements errors, nonlinearities, and
all other potential error sources; i.e., the response to
unexpected errors must be wodest degradation of accuracy
rather than divergence.

2.2.6.2 Estimation Algorithm Sele.tion. At the heart of the data fitting
process is an estimation algorithm. The literature abounds with such
algorithms, and while many candidate algorithms for onboard OD applications
can be shown to be mathematically equivalent under idealized assumptions,

the differences in real-world performance in a computer of limited word

*By J. P. WcDanell and K. U. Mease (187
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length, limited core, and limited speed can be significant. This section
will define the major classifications of algorithms, describe their relative
strengths and weaknesses, and provide some guidelines for selecting an
algorithm for onboard 00.

Algoritims typicaliy used for OD are built around a linear estimator.
The estimator processes measurements to yield additive corrections to an
a ﬁriori spacecraft state vector about which the nonlinear equations of motion
and equations relating the spacecraft state to the observables have been
linearized. Algorithms can be classified according to the wode of measurenent
processing. "Batch" algoriinms accumulate all the weasurements to be employed
in a given orbit deter-ination and process them simultaneously. “Sequential®
algorithms process the measurements one at a time, as they are acquired.
Sequential algorithms are clearly attractive if storing the required number
of measurements for UD exceeds the storage capacity of the onboard computer.
However, if the actual trajectory is a nonlinear function of the a priori
reference trajectory, then more than one iteration may be required gor
ccavergence. This entails relinearizing about the corrected trajectory frow
the previous iteration and then reprocessing the measurements. Thus, the
measurements must be stored for either the batch or sequential algorithus.
Modified sequential algorithms, referred to as “extended sequential” algorithms,
seek to avoid storing the measurements despite the presence of nonlinearities.
The corrections produced by the linear estimator after the processing of a
measurement are used immediately to correct the state vector. Tnen, before
the nex. measurement is processed, a relinearization about the corrected
vector i< performed. The extended sequential algorithms require an increased
amount of computation for a single iteration, but, on the other hand, they
offer a higher probability of converging in the first iteration.!

The sequential and extended sequential algorithms have a computational
advantage over the batch algorithm. An essential step in the batch processing
of measurements i1s a matrix inversion. If the measurements are processed
sequentially, the matrix inversion is reduced to a sequence of scalar divisions,
provided the measurements are uncorrelated. Another advantage of the sequential
and extended sequential algorithms is the relative ease and computational
efficiency with which dynamic process noise can be included. More will be
said about this in 2.2.6.3.

In the presence of nonlinearities, the convergence of the batch,
or sequential algorithms which process all the measurements before relinearizing,
is less sensitive to an occasional “bad" data point than that of tne extended
sequential algorithms. A further advantage of the batch alyorithms is that
they are computationally more efficient for a large number of measurements.

Estimation algorithms can also be classified as to whether the
covariance matrix for the estimated states is used in the cumputations or
whether some factor or factors of it are. The Kalman sequential algorithmé
involves the covariance matrix; the Potter sequential a!gorithm3 invglves a
square-root of the covariance matrix; the Carlson-Cholesky algorithm® involves
a triangular square-root of the covariance matrix; and the Bierman algoritnm5
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involves a UDUT factorization of the covariance matrix, where U is a unit

upper triangular matrix and D is a diagonal matrix. Somewhat anclogously,
there is the standard weighted least-squares batch algorithm, and there is
the square-root information filter (SRIF)%, an alternative tatch algorithm,

The “square-root* alyorithms are more robust in the presence of
numerical errors due to finite precision arithmetic®. Tnis is an important
property for an algorithm which is to be implemented o1 an onboard computer
of l1imited word length. A corollary is that the square-root algorithms can
tolerate a qreater dynamic range of variaoles without becoming numerically
unstable. A number of modifications to the Kalman algoritha have been
suggested for the purpose of rendering it more numerically stable. However,
the more fundamental approach of reformulating the algorithm in terws of a
factorized covariance matrix has proven to te more effective.®

The Bierman U-D algorithi has the numericai robustness of the
square-root algorithms, yet does not require the computation of numerous
square-roots and is, therefore, faster than the squaie-root algorithms.
Moreover, if it is efficiently implemented, its core requirements and
computational speed are comparable to the more popular but less reliable
Kalman algorithmb. Thus, the Bierman algorithm has the most desirable
combination of properties for most onboard QU applications.

2.2.6.3 Formulation of Models. Integral parts of the onboard U system

are the mathematical models which are used to generdate the predicted observables.
The predicted observables are computed as a function of the free parameters

in the models. The estimation algorithm determines the values of these parameters
such that the predicted observables agree with the actual data in a weighted
least squares sense. The free parameters consist of tne components of the
spacecraft state, along with other parameters appearing in either the trajectory
or observation models. Because of the limitations imposed by the onboard
computer, it is desirable to keep the number of free parameters, and hence,

the dimensionality of the estimation problem, as low as possible without
degrading the OU bclow the required accuracy.

Tnere are a number of choices for the coponents of the spacecraft
state (e.g., positions and velocities in Cartesian coordinates, classical
orbital elements, etc.). The particular choice of components, in turn,
dictates the form of the trajectory and observation models. Thus, there is
some flexibility in formulating the problem which the estimation algorithn
will be required to solve; a prudent choice may be an important factor in
maximicing the ultimate accuracy and reliability of the onboard O system.

Orbital elements are often preferable for modeling a spacecraft in
orbit about a body. However, one must be careful to choose a set of elements
which will not become singular over the range of possidle trajectories.

Each set of elements will lead to corresponding equations of motion. It way
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be possible that, for a particular set of elements, the corresponding equations
of motion can be solved analytically. This would then allow the partial
derivatives needed for 0D to be derived analytizally, rather than by integration
of variational equations, which would recuce considerably the computational

load of the 0D furction.

Another possibility is that, for a certain set of elements, one or
more of the elements may remain constant for the particular trajectory (orpit)
to be flown. If the value of a constant element 1s known to sufficient
accuracy, then there is no need to estimate it, and the dimensionality of the
estimation problem can be reduced. Certain components of the spacecraft state
may also be eliminated as estimated parameters, even if they are not accurateiy
known, if knowledge of their values is not required and they are not observable,
1.e., they do not influence the measurements.

Another important question is how accurate should the trajectory
model (equations of motion) be? Should one account for thnird bocy effects,
solar radiation pressure, asymmetries in the gravitational Jotentials of the
gravitating bodies, spacecraft gas jet leaks, etc.? The considerations are:
1) storage capacity of the onboard computer, 2) the number of additional free
Jarameters that will have to be estimated, ana 3) the impact on the accuracy
and reliability of the OU if the above items are not accounted for.

Since it is often not possiple to model the trajectory to an
accuracy consistent with that of the measurements, technigyues for wodel arror
compensation are necessary. The techniques involve the addition of stochastic
acceleration terms to the equations of motion. 1Ine stochastic acceierations
can be modeled as white noise or Lauss-Markov processes of first, second, or
third order. Gauss-Markov processes have been particularly effective in
compensating for unmodeled spatial veriations in the gravitational potentials
of the Earth and the Moon. The stoct ..tic accelerations, also known as
"process noise”, are easily incorporated into the sequeniial and extended
sequential estimation algorithms. Tneir inclusion into the batch algorithus
is more complicated and entails an increased computational load.

Unboard clocks will, in general, be 'ess accurate tnan clocks used
in ground UD systems, and it will be necessary to account for timinyg errors.
The errors are usually modeled as a bias ana a drift, and the two associated
parameters are included in the estimated parameter list.

A final point concerns the importance of the spacecraft attitude
in the OD process. In many cases attitude determination and control dre
completely independent of UU. However, there may be requirements (e.q., to
maintain a certain pointing accuracy continuously), that would couple attitude
and orbit determination. Furthermnore, if atmospheric drag contributes
significantly to the spacecrdaft motion, then attitude and orbit deteraination
are coupled, since the drag is a function of the spacecraft attitude (unless
the spacecraft can be considered spherically sywetric).

[I1-90



I\

REFERENCES FOR TOPIC 2.2.6

Tapley, B. D. and B. E. Schutz, “A Comparison of Urbit Uetermination
Methods for Geodetic Satellites," in The Use of Artificial Satellites
for Geodesy and Geodynamics, ed. G. Veis, Athens, 1973.

Kalman, R. E., “A New Approach to Linear Filtering and Prediction Probleus,"
Journal of Basic Engineering, Vol. 82, 1960, pp. 35-4°,

Battin, R. H., Astronautical Guidance, McGraw-Hill, New Yurk, 1464,

Carlson, N. A,, "Fast Triangular Factorization of the Square Root Filter,"
AIAA Jorrnal, Vol., 11, 1973, pp. 1259-1265.

Bierman, G. J., Factorization Methods for Discrete Sequential tstimation,
Academic Press, New York, 1976, '

“hornton, C. L. and Bierman, G. J., "A Numerical Comparison of Uiscrete
Kalman Filtering Algorithms: An Urbit Uetermination Case Study," WASA/JPL
Technical Document 33-771, June 1Y76.

[11-91



2,2.7* Propagate the Empheris

In an autonomous navigation subsystem the trajectory subsystem
will have several functions: orbit prediction, ephemeris generation, event
prediction, and maintenance of constants required for navigation algorithus. -

2.2.7.1 Orbit Prediction. Urbit prediction consists of taking an initiai
spacecraft state vector at a specified time and propagating the trajectory to
a second time to obtain a final spacecraft state vector. The trajectory
subsystem is available to the remainder of the navigation subsystem for
serving this function. The propogation algorithm wmay he analytic in forwm or
involve the numerical intration of a set of equations modeling the force
field. Orbit prediction falls into two major categoies: special perturbations
and general perturbations. Special perturbations refer to the prediction to
an orbit by numerical integration in which the department from a twu-body
solution is calculated. Tnis is most usefui for orbits of limited duration.
Among the variety of methods available are Cowell's method (integration of
total acceleration), Encke's method (integration of coordinates) and variation
of parameters method. General perturbation methods comprise the analytical
integration of series expansions of the perturbative accelerations. The
criteria for selection must inciude state vector accuracy over a required
time interval, the time avilable to perform the calculations, the range of
possible mission types for which the system must be applica~le, the word size
of the computer being utilized, and the storage requirements. Simpler wmodels
may be possible if periodic updating of model parammeters is allowed.
UObviousiy the time period between model updates must comfortably exceed the
duration requirements of autonomous operation.

2.2.7.2 Forces. A subset of the following forces acting on the spacecraft

will need to be modeled: atmospheric drag, solar radiation pressure, non-

spherical gravitational potential of central body, third body gravitational
perturbations, gas leaks, thrusting maneuvers. The subset will be selected

on the basis of size of orbit perturbation relative to urbit control parameters.

For geosynchronous satellites with tight station control it may be possidle -
to express the force model as a small perturbation on a perfectly geosynchronous
satellite mission. This will simplify the model formulation and increase the

accuracy of the calculations for the same conputer word size.

In many implementations it is likely that the orbit cetermination
sudsystem will require the state transition matrix between any two selected -
epochs in addition to the state vector. Again this imay be provided by analytic
formulations but more probatly it will require numerical integration of the
variational equations. This section will comprise the bulk of the trajectory
subsystem in terins of computing time ind storage reguirements.

2.2.7.3 Coordinate Systems. Central to any propayation scheme is the
selection of the coordinate systeim in which the state vector and state
transition matrices are expressed. Cartesian coordinates, relative to the

*By S. J. Kerridge -
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center of the primary body, allow relatively simple formulation of the
accelerations and variational equations but have several disadvantages,
including the wide range of values taken on by all coordinates, the relatively
time consuming process of numerical integration and the relatively large
algorithm implementations. A set of orbit elements, such as classical or
equinoctial for instance, may be more appropriate for an onboard system that
requires minimizing algorithm size. Approximation (such as small angle and
first order perturbations only) should be made wherever possible to reduce

the load on the autonomous system, provided, of course, that performance can
be maintained. There is an obvious tradeoff implied here between the range of
missions for which a particular autonomous system is appropriate and simplicity
of a system applicable only to one specific mission or mission type.

For example, a trajectory subsystem required to serve all Earth orbital
missions will be more complex than one required to serve only geosynchronous
satellite missions which, in turn, will be more complex than one only required
to serve a geosynchronous satellite located at, say, 139°W latitude.

2.2.7.4 Celestial Body Ephemeris. Ephemeris generaticn involves the
calculation of the coordinate of any appropriate solar system or celestial
body at a specified epoch. In particular, for Earth orbital missions this
will almost certainly include the Sun and the Moon which can, among other
things, act as perturbing gravitational sources, as radiation sources and as
possible objects to be observed by onboard sensors for attitude control and/or
orbit determination.

As with orbit propagation, the complexity of the ephemeris algorithms

is related to the accuracy and speed requirements placed upon this part of

the trajectory subsystem. The algorithms will probably take the form of
polynomials. The simpler ones could have time as the independent variable

in a simple polynomial while more complex schemes may involve Chebyshev
polynomials. The longer the time requirement over which the algorithm must
perform adequately (in terms of accuracy) the more complex the formulation

that will be reqrired, and the more time-consuming will be the execution.

2.2.7.5 Event Prediction. Related to ephemeris generation and orbit
propagation is the function of event prediction. Events such as solar
occultation may have a major impact on the operation of a spacecraft as

the need for spacecraf! systems to be reconfigured when such an event occurs.
The trajectory subsystem is responsible for predicting the occurrence of such
events and making this data available to the appropriate spacecraft systems.
The predictions are made by combining spacecraft position and celestial body
ephzmeris data. This will include quantities such as the angle at the Sun
between the Earth and the spacecraft for predicting solar occultations.

2.2.7.6 Other Considerations. It is also assumed that the trajectory
subsystem will be responsible for the maintenance of all parameter values and
constants required for the autonomous navigation subsystem. This will avoid
conflicts in responsibility. The parameters and constants appear in the
algorithm formulation. A specific algorithm and associated parameters have a
limited durability in terms of sufficiently accurate performance. The
parameters will need to be updated at the conclusion of each of these time
periods to preserve the accuracy for the succeeding time period. If this
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updating is not done sufficiently often then performance will degrade. The
degradation may be gradual or catastrophic depending on the formulation
selected. In most cases the former would appear to be preferable.

An overriding concern of the trajectory subsystem, as of the
navigation subsystem as a whole, is that it not get itself into a state from
which {s cannot recover. Algorithms should not be used which have guestionable
stability or restricted applications within the set of possible states which
it will encounter. Reassurance in this regard is obviously tied to the
adequate validation of the system., Prior to flight, validation will test the
software to be used in the flight hardware with sinulation of sensor data,
maneuvers, etc. Validation will proceed at two levels for an operational
system - the initial checkout phase and the routine operations phase. The
latter will involve minimal ground monitoring and will not be essential to
the adequate performance of the trajectory subsystem within the autonomy
requirements, but will allow for possible augmentation of that performance
if so desired.

2.2.8¢ Maneuvar Planning

2.2.8.1 Functional Description. The Manuever Planning function is required
as a part of an Autonomous Navigation subsystem whenever the orbit of the
spacecraft must be controlled. As indicated in Figure (page [11-75) the
function fits logically between the Urbit Determination segment where the
current orbit state is estimated and the Maneuver Command segnent where
maneuvers are implemented.

The top level flow of activities witinin the Maneuver Planning
segment is illustrated in Figure 111-12. The process begins with an orbit
estimate from the Orbit Determination segment. This estimate is then compared
tc the crbit established by the mission requirements. 1f orbital corrections
are required then continued computations are needed. If not, the control is
returned to the ktxecutive program,

When it is determined that a maneuver is required then algorithms
are executed which compute the changes necessary to accomplisnh the required
orbital correction. The results of these computations are, typically, a
maneuver time, magnitude of the velocity change, and the direction of the
velocity change. Since the process does not, in general, account for all of
the details of the implementation process, the output is described as the
"desired” or "ideal" maneuver. Many algorithms will compute two or more
desired maneuvers for a single orbital correction.

Not sh.wn in Figure [1[-12 are the interfaces with the Trajectory
segment. In order to reduce the computer requirements and maintain internal
consistency, the Maneuver Planning seygment should utilize the services of the
Trajectory seyment whenever Trajectory propagation is required.

The process of computing the desired maneuver depends upon the
type of orbital correction required, the characteristics of the spacecraft
and the orbit characteristics.

*g8y J. A. Kechichian
111-94



ORBIT
DETERMINATION

| missioN
| REQUREMENTS

MANEUVER
REQUIRED

YES

$/C & MISSION
ACA?m:UU:/EEgDESRED l CHARACTERISTICS
AND CONSTRAINTS

DESIRED MANEUVER
{aV, DIRECTION, TIME)

MANEUVER COMMAND

Figure IIi-12. /laneuver Planning Flow Diagram

111-95



The next section discusses the requirements on the Maneuver
Planning function and the following section discusses the various techniques
which might be employ=d. The most significant factor which should be clear -
from these discussions is the strong dependence of the Maneuver Planniny
function on both the mission and spacecraft characteristics. This implies
that relatively little carry-over can be expected from one application to
the next.

2.2.8,2 Requirements on Maneuver Function. The selection and implementati B
of autonomous maneuver algorithms for a particular application depends upon )
the requirements generated by:

(1) The mission requirements
(2) The operational characteristic
(3) The architecture of the on-board autonowous System

(4) The characteristics and operational procedures of the ground :
control system -

The mission places a number of different types of requirements on
the maneuver planning function. First and foremost, the mission requiremsents
determine which elements of the spacecraft’'s orbit must be controlled and to
what accuracy. For example, geosynchronous missions generally require that
the spacecraft's position over a specified tarth-fixed longitude be controlled -
to within a specified tolerance in both latitude and longitude. A low tarth
orbiter may require that the altitude be controlled within a specitied
deadband. The mission requirements may also place cnhnstraints on the maneuvers.
The typical constraint involves the interaction of the maneuver with payload
functions. Since on many spacecraft the execution of a maneuver impacts or
requires temporary cessation of the payload function, there is a strong
requirement to either minimize the number and/or magnitude of the maneuvers .
or restrict their locations. '

“

The spacecraft operational characteristics and constraints also
place significant requirements on the Maneuver Planning function. Since the
Propulsion and Attitude Control subsystems are the principal subsystems
involved with the execution of a maneuver, the characteristics of these two -
subsystems have the major impact. The Propulsion subsystem characteristics :
of primary importance are:

(1) Propellant availability: If the propellant supply is very
limited then the maneuver algorithms must utilize the propellant -
in the most efficient manner possible.

(2) Thrust Characteristics: The time required to deliver a
specified impulse, the characteristics of the magnitude
control and the subsystem accuracy are all of importance. If
the time required to deliver the required maneuver wmagnitudes
is short relative to the period of the ordbit, then certain -
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simplifications can be made in the maneuver algorithas.
However, if the time is long, then more complex calculations
are required. In this latter case, the characteristics of
the acceleration magnitude may also influence the maneuver
design. The maneuver design for long maneuvers using a
"blow down® Propulsion Subsystem where the thrust magnitude
decreases during the maneuver, is significantly different
than the design for a high impulse system.

The characteristics of the thrust cut-off techniques may place
constraints on the magnitudes of the maneuvers which can be achieved. Systems
with acclerometer cut-off can typically aeliver almost any maneuver magnitude,
whereas systems with timer cut-off may only be able to deliver maneuvers in
fairly large increments. Large juantization of maneuver magnitudes must be
accounted for in the maneuver algorithms. Finally, systems with large error
characteristics may require special techniques.

The characteristics of the Attitude Control subsystem also influence
the maneuver design in a number of ways. Three-axis stabilized spacecraft
and spinning spacecraft have very different maneuver characteristics. Three-
axis stabilized spacecraft come in several flavors. Some are able to turn and
point the acceleration vector in arbitrary directions whereas others maintain
a fixed attitude and deliver the maneuver vector along specified directicns
(in components). There are also differences between spacecraft which g¢re
tarth-referenced and those which are inertiel.

There are also some variations in spinning spacecraft. Sowe
maintain a fixed pointing direction while other are able to reorient the
spin vector to arbitrary directions.

The maneuver algorithms may be influenced by some nr all of these
spacecraft characteristics and constraints, and careful analysis is required
before the design is finalized.

The third major driver on the Maneuver Planning functions is the
architecture and requirements of the onboard autonomous system. Maneuvers
wust be planned in such as way as to fit within the overall autonomous control
flow. Examples of requirements which might be generated in this case include
interface protocol with other subsystems, execution time windows, and
computation restrictions. One of the most significant requireaents placed on
the Maneuver Planning function within an autonomous navigation system is the
requirement to produce "fail-safe” resuits. The algerithms must be designec
to produce the correct results under all conditions. In particular the algorithas
must be able to recognize erroneous results and take the appropriate action.
Conditions which must be considered include bad input data, orbit conditions
outside of the acceptable limits, and changes in the spacecraft configuraiion,

The final area placing requirements on the Maneuver Planning
function is the ground control system. Since maneuvers are generally
significant spacecraft and mission events, they must be planned in such a way
as to allow complete ground system visibility and control. If at all possible
the maneuvers should be planned such that ground control nas the opportunity
to review and possibly modify the plan before execution. It may also be
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desirable to employ common techniques and algorithms in the spacecraft and on
the ground.

In summary, all of the areas discussed above have the potential -
for placing requirements on the Maneuver Planning function. A careful analysis
of requirements must be made before the design is finalized.

2.2,8.3 Maneuver Techniques. The techniques used to control the orbit of
the spacecraft may be broken aown inic 2 number of general categories.
They are:

. Transfer

. Rendezvous

. Stationkeeping

. Orbit Maintenance

W N -

The techniques used to generate manesyvers for each of these
categories are also a function of the type of orbit (circular or elliptical),
the cequirements and constraints (minimum fuel, for example), the computation
capability of the spacecraft, and the autonomous operations (required _
convergence). In tne following paragraphs the techniques appropriate for -
each of the categories will be discussed and appropriate references given
where possible. For current purposes only maneuver techniques applicable
to "high® thrust spacecraft will be considered. There is another large
body uf techniques appropriate to spacecraft with "low" thrust spacecraft
ton drive systems, for example).

2.2.8.3.1 Transfer. A transfer is defined as a genera® change of the

rosition and velocity of the spacecraft meaning a general change from the

initial kinematic conditions at time t, (rgp,Vy) to the final conditions at

time tf (re,Ve). A transfer can be totally specified (rendezvous) or

partially undetermined (for example in the case of an interception, Vf is

free). The location of the spacecraft in the final ordit is not normally -
controlled by the transfer solutions. In general a transfer is achieved in :
a certain optimum way. the most common criterion being the cne that leads

to the minimum fuel expenditure. Minimum time transfers, on the other

hand, have obvicus applications for rescue and incerception missions. In

either case it is necessary to choose the reference of firing locations

along the orbit where the impulsive velocity changes have to be applied, -
with the appropriate thrust orientation and magnitude at eacn such location.

It is assumed that the attitude control subsystem can freely orient the

thrust vector in any desired direction in space. However, for spacecraft

that are inertially fixed in space, this reorientation may not always be

possible, in which case the transfer is of the constrained type. -

The transfer solution is dependent on the type of propulsion
subsystem used: the propulsion subsystems may be classified intv two main
categories: classical or chemical propulsion subsystems capable of relatively
high thrust and imparted acceleration but relatively low specific impulse,
and electric propulsion subsystems characterized by low thrust and high
specific impulse, The first type leads to transfers that can be modeled by -
a sequence of finite impulsive velocity changes applied instantaneously,
while the electric subsystems (ion drive) require continuous thrust programs
to achieve the desired change or orbit. The impulsive transfer has received
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a great deal of attention from several contributors who focused mainly

on fuel ainimizing solutions. Hohmann, Hoelker and Silber used the method
of parametric optimization where the total number of impulses (in general 2
or 3) is fixed a priori, thereby reducing the investigation to the
determination of the firing locations and thrust magnitude and orientation
of each such location in order to minimize the arithmetic sum of the velocity
changes resulting in a minimum fuel! expenditure. This led to the well-
known two-impuls: Hohmann transfer and the three-impulse bi-elliptical or
bi-parabolic transfer of Hoelker and Silber, between coplanar circular
orbits. This method of parametric optimization cannot specify the optimal
number of impulses for a given transfer and is inadequate for low thrust
trajectory optimization. The application of the methods of functional
optimization using Pontryagin's maximum principle has led to the successful
solution of many types of transfer.

The transfer between neighboring near-circular orbits has received
the most attention because of its miny useful applications in tarth orbit.
The solutions obtained by Contensoul! (coplanar) and Marec? and Edelbaum3
(noncoplanar) are linearized optimal transfer solutions given in closed form
and require at most two impulses to achieve the orbit change.

The general transf:r between elliptic orbits is obtained througn
numerical iterations by Small® and is rather difficult to implement onboard
the Navigation system which must be fail safe, meaning that it must be
capable of finding a solution for every possible situation. These iterative
techniques usually require large computational capabilities, unlike the
linearized closed form solutions which have the additional advantage of
always providing a successful outcome. -

It is sometimes important to consider simple non-optimal strategies
which are much easier to implement, such as the Lambert type of transfers
which consist of two impulses applied at the end points of the transfer
orbit. The first impulse transfers the spacecraft cn an orbit that intersects
the final desired orbit, at which point a second impuls- is applied to enter
the final orbit. Finally, in the case of intersecting orbits, a single
impulse applied at the point of intersection is sufficient to achieve the
desired transfer.

2.2.8.3.2 Rendezvous. Fendezvous is an extension of the transfer probiem
where the lTocation of the spacecraft in the final orbit is also controlled.
The analysis of orbital rendezvous trajectories is in general more difficult
than the transfer problem because of the excessive dimension of the state
vector. A rendezvous problem begins with a vehicle performing a prescribed
motion as the initial condition and ends with the vehicie performing a time-
related prescribed motion as the final condition. Tnere are mainly two types
of rendezvous: the terminal phase rendezvous and the orbital rendezvous.
Terminal phase rendezvous is specifically concerned with the relative motion
between the passive target and the active rendezvous vehicle. The motion

is restricted to small displacements with the equations linearized about

the target body. Furthermore, a rendezvcus may be achieved with a fictitious
target, not necessarily a vehicle in orbit; an important example is the
rendezvous in longitude for a geosynchronous spacecraft. Within orbit
rendezvous, three important classes arise, namely the time-tree, time-
limited and time-fixed rendezvous.
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The time-free rendezvous solutions degenerate into the corresponding
transfer solutions with appropriate waiting periods between impulses, meaning
the parking in intermediate ellipses obtained through the various impulse
splitting techniques. Time-limited rendezvous usually involves a tradeoff
batween velocity change magnitude and a time, while time-fixed rendezvous
determines the optimum trajectory between orbiting vehicles satisfying given
initial and final times.

Unlike the transfer solutions, the minimum velocity change
magnitude rendezvous solutions may require up to six impulses obtained
through complex iterative routines. Such an example consists of the
rendezvous between neightoring vehicles in noncoplanar near-circlar orbits.?
The general problem of the rendezvous between general elliptic orbits is
iot yet solved or fully understood; nevertheless Lambert type solutions
consisting of two impulses applied at the end points of the transfer orbit
may be easily calculated. These solutions are, in generdl, nonoptimal.
Considerable fuel may be saved by a two-parameter search on the end times
without excessively texing the autonocwous onboard cowputational capabilities.

Finally, there is a class of special purpose rendezvous techniques.
The primary example is the co-elliptic rendezvous technique developed and
proven during the manned Gemini program anc utilized during the Apollo and
Skylab programs. Tnese techniques involve preselected terminal approaches
preceded by a sequence of maneuvers which yield the desired initial
conditions. To date such techniques are limited to circular orbit operations.

2.2.8.3.3 Stationkeeping. Stationkeeping arises during missions involving
satellite inspection and crew rescue on one hand, and during geosynchronous
missions where the spacecraft is required to remain inside a narrow
longitudinal deadband at the equator centered about a fixed ground station
longitude. Stationkeeping therefore consists of keeping the spacecraft in
the vicinity of a fictitious or real target once a rendezvous is achieved.
For satellite inspection or prior to docking, a standoff position is often
desirable. This is a location in the target vicinity from which operations
required during the mission can be carried out. An ideal relative pusition
with respect to fuel consumption is one which requires no active thrusting
to maintain that position. This can effectively be the case if the spacecraft
is lying on the orbit of the target vehicle with a smnall angular separation.
A small radial impulse would force thre spacecraft to oscillate about its
neutral position allowing inplane inspection of the target in two dimensions.
The East-West stationkeeping of geosynchronous spacecraft consists of an
active control of the drift in longitude experienced by the vehicle under
the influence of the Earth's tesseral harmonics, solar radiation pressure
and luni-solar attraction. Several tdargeting strategies may be considered
by the Navigation subsystem of the spacecraft. The drift cycle may be
effectively repeated by controlling only the semi-major axis if the daily
libration in longitude induced by the solar radiation pressure which affects
eccentricity does not exceed the given tolerance. Utherwise both semi-major
axis and eccentricity may be controlled by using the linearized transfer
solutions for coplanar near-circular orbits mentioned in 2.2.8.3.1 above,
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obtainatle in closed form and easily implemented onboard the Autonomous
Navigation subsystem.

2.2.8,3.4 Orbit Maintenance. Orbit maintenance consists of maintaining
some or al1 of the orbit elements or even some paraweters which are functions

of these elements within specified tolerances, depending on the characteristics

of the mission flown. This is achieved by maneuvering the spacecraft at
regular intervals in order to correct for the effect of perturbations
(geopotential, third body, solar radiation pressure, atmospheric drag)
that affect the size, shape and orientation of the orbit and ultimately
viclate the specified deadband tolerance that results from the drift.

For example, it may be desired to control the period of a
spacecraft in a 24-hour elliptic orbit by adjusting the semi-major axis by
way of small impulse velocity changes applied at perigee.

Another example consists of maintaining a frozen orbit by keeping
the argument of periapse close to 90° and effectively cancelling the effect
of J2 and J3 zonals on eccentricity which then stay very close to zero.

Another important example consists of maintaining the nodal drift
within a specified narrow deadband in order to obtain a ground track repeat
at regular intervals (N day repeat orbit) for purposes of observation. The
nodal drift is primarily the result of atmospheric dray for low-edrth
orbiters and can be effectively controlled by semi-major axis adjustment.

In many cases it may be necessary to design appropriate targeting
strategies that allow the spacecraft to remain inside the tolerant deadband
for the longest possidle time, thereby minimizing maneuver frequency and
fuel evpenditure. It may therefore be necessary to consider the various
targeting strategies in the control flow logic of the Navigation subsystem
in order to carry out the orbit control more effectively.

I11-101



REFERENCES FOR TOPIC 2.2.8

P. Contensou, Etude Theorique des Trajectoires Optimales dans un Champ de
Gravitation: Application a un cas d'un Centre Unique. Acta Astronautica
8, pp. 134:150, 1962.

J. P, Marec. Transferts Impulsionnels Economiques Entre Urbites
Quasi-circulaires Proches non Coplaniires, Acta Astronautica, Vol. 14,
op. 47-55, 1968,

T. N. tEdelbaum, A General Solution for Minimum Impulse Transfers in the
Near Vicinity of a Circular Orbit. Analytical Mechanics Associates Inc.
Cambridge, Massachusetts.

He W. Small, Minimum-fuel Time Free Transfer Between Elliptic Urbits.
PnD Thesis, Stanford University 1972,

J. B. Jones, Optimal Rendezvous in the Neighborhood of a Circular Uruit:

The Journal of the Astronautical Sciences, Vol. XXIY, No. i, pp. 55-90,
Jan-March 1976.

I11-102



2.2.9* Maneuver Ccmmand Function

2.2.9.1 Functional Description. The implementation of maneuvers onboard
a spacecraft In the final analysis involves sending a series of commands to
various spacecraft subsystems. These subsystems almost always include
Attitude Control and Propulsicn and may also incliude Power, Telemetry and
Communications. The function of the Maneuver Commmand segment of the
Navigation subsystem is to transform the "ideal“ maneuvers generated by the
Maneuver Planning segment into the appropriate sei of maneuver commands.

2.2.9.2 Interfaces. Before investigating the details of the Maneuver
Command functfon, it is important to understand the interfaces. The Maneuver
Command function is initiated after the Maneuver Planning function has
decided that one or more maneuvers are required and has computed the time,
magnitude, and direction of the maneuver.

This input is generally referred to as the idea! maneuver, since it
is a result of numerical calculations and does not account for many of the
realities of the spacecraft implementation. For example, the magnitude of
the maneuver is defined only by the limits of the computer word length
while the spacecraft may be only able to implement maneuvers with a coarser
increment size. The same )limitations may also be true of the maneuver time
and direction. The Maneuver Planning segment may only check to see if the
maneuver is feasible.

At the other end of the Maneuver Command function is the actual
spacecraft. The commands must account for both the operational characteristics
and configuration of the other spacecraft subsystems involved in the
execution of a maneuver. For example, if the propulsica subsystem can only
implement maneuvers in increments of a specified impulse size, then the
magnitude of the ideal maneuver rwst be adjusted t» fit. The Maneuver
Command segment must also adapt to changing spacecraft configurations. Ffor
example, if attitude control is unable to implement the nominal control
modes fo~ a maneuver, then alternate appropriate mwodes must be selected.

The output characteristic of the Manauver Command subsystem are thus clearly
dependent upon the spacecraft operational characteristics.

2.2.9.3 Detailed Description. It is for this latter reason that the
Maneuver Command function must, ideally, execute the following actions.
These actions are discussed in more detail in the following paragraphs.

1. Determine the appropriate control mode.

2. Transform the ideal maneuver parameters into commanded
maneuver parameters.

[
.

Formulate the command sequence required to a) configure the
spacecraft for the maneuver, b) execute the maneuver, and
¢) reconfigure post-maneuver,

*8y J. B. Jones
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4, Issue the commands at the appropriate time relative to the
required maneuver time.

5. Place the necessary documentation parameters on the telemetry
stream and avdit trail.

6, Inform other segments of the Navigation subsystem of the
commanded maneuver parameters.

7. Monitor the execution of the maneuver commands and issue abort
comnands if required.

8. Upon maneuver completion notify the remainder of the
Navigation subsystem of any known deviations from the
c¢onmanded parameters.

Deterinining the appropriate control mode is a function of the
spacecraft design and current status. It is not unusual for a spacecraft to
have two or more modes for executing a given maneuver. These modes st be
prioritized according to some criterion (minimue fuel, simplicity, safety,
etc.) and ground rules established for choosing a particular wode. In
addition, the system must have knowledge of the hardware and/or spacecraft
configuration required in order to utilize a particular mode. Using the
ideal maneuver and knowiedge of the spacecraft status, the Maneuver Command
segment sorts through the potential modes in priority order until an acceptable
mode is found. Of course, if an acceptable mode is not found, then the system
aborts the maneuver and awaits ground instructions.

Given the control mode, the Maneuver Command subsystei can now adjust
the maneuver parameters to match the capabilities of the system. As noted
earlier, a typical example is adjusting the maneuver magnitude to an integyral
number of pulses. The adjustment procedure would follow a predetermined
criterion. Typical exampies which have been used for the latter <¢re: minimum
error, minimum change and next lower step. The results of the adjustment are
used to determine tlhe commanded maneuver parameters in action 6.

The third action is to formulate the comaand sequences. Since the
autonomous fedtures must operete in concert with the ground control function,
the appropriate technique is to pre-construct tables which exactly parallel
the ground comnand sequences. UGiven the control wode, the appropriate subset
o7 sequences can be selected and the values determined in the previous action
inserted into the command sequence. The command sequences must al’so contain
auxiliary data which specifies the interrelationsnip between sequences,
particularly relative to timing. It may also be useful to carry constraint
data along with the command sequences. In order to minimize memory storage
requirements a multi-level structure is probably appropriate.

Knowing the required commnand sequence and the maneuver time, the
Navigation subsystem can now issue the commands at the appropriate clock
times. The command sequence naturally ¢ :parates into 3 blocks: configuration,
erecution, and reconfiguration. The <o: ‘iguration cowmands, which wmay begin
an hour or more before the actual maneu er, bring the spacecraft to a readiness
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state. For simplicity, the Navigation subsystem vould issue high level commands
with the cirected subsystem issuing the detailed commands. Each step is
monitored and the next step initiated only after verification of satisfactory
execution of the previous step. The execution sequence both initiates and
terminates the actual maneuver. Monitoring on several levels is appropriate.
During the actual maneuver, sbort commands may be i1ssued by any of the
subsystems involved with the maneuver (or, of course, the ground). After the
maneuver the reconfiguration commands return the spacecraft to the desired
"cruise" configuration. This may or may not he identical with the premaneuver
configuration.

Tne Orbit Detzrmination, Trajectory and possibly the Maneuver
Planning segments of the Navigation subsystem will, in general, benefit from
having knowledge of the commanded maneuver parameters. The Maneuver Command
segment is the central distribution point. Kelative to action &, if the
commanded maneuver is modified and/or aborted, then the Maneuver Lommand
segment must pass tnis information along. The appropriate technique is
probably a table of actual parameters which is updated by only this segment.

The overall development of this segment must caefully consicer the
requirements for fault tolerance. Special checks must be developed to insure
the accuracy of the commends issued. Issuing command in a reverse sequence,
for example, could create a spacecraft failure. Tnerefore, it will probably
be appropriate to develop interlock sequences with the central executive
controller to doubly protect against erroneous comaands.

2.2.10% Verify Navigation Performance

A Navigation subsystem onboard an autonomous spacecraft must have
the same level of failure detection, isoiation, and -orrection capability as
the other spacecraft subsystems. In a Navigation subsystem this implies the
monitoring of the sensors, computer status, and algorithms. Since the output
of the Navigation subsystem generally takes the form of data or comnands
operated un by other subsystems, care must be taken not to provide erroneous
outputs.

The status of the sensors must be monitored cc iinuously in ordce
to insue that “"bad" data is not introduced into the orbit estimation process.
When errors are encountered, steps must be taken to either recalib-ate or
switch to alternate data sources. In some cases, sensors may be shared with
the Attitude Control subystem, in vhich case the proper protocol must be
firmly established. Detectiny sensor failures is improved by the
availability of either redundant cata or redundant datd sources.

Tre techniques used for monitoring and correction of computer
hairdware problems will be a strong function of the overdall architecture. For
example, if the navigation function shares the computer facility with other
functions, then the computer failure protection may be handled by an executive
program and the navigation subsystem menitors only those portions of the
computer under its exclusive control. In this case monitoring for bit errors
may be sufficient.

*By J. B. Jones
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If, however, the navigation function operates in a dedicated
computer facility, then additional hardware failure protection is required.
The external monitoring by the use of commanded test from a separate fault
tolerant computer appears to be an attractive option.

The monitoring of the navigation algorithms may be both the most
critical and most difficult of the failure detection functions. This function
is currently executed by skilled analysts i~ the ground navigation centers.
while a large body of knowledge exists relative to the problems which occur,
little if any work has been accomplished toward translating this knowledge
into automatically operating procedures.

2.2.11% Historical Summary of Autonomous Navigation Studies

The earliest paper which considered autonomous navigation appeared
in the literature in 1963l and initiated a series of papers which considered
the use of horizon scanners coupled w1th an 1ngrt1a1 reference to autonomously
determine the orbit of the spacecraft.? »3,4,5,% Following this lead a number
of papers began Brogos1ng the use of unknown landmarks for navigation
purposes./»8,9 )1 Finally in the late 60's and early 7U's three
general studies were conducted by the Aerospace Corporation.b-u-l4 These
three studies considered a wide range of possible navigation measurements
and provided a basis for judging their relative potential over a range of
orbits.

A1l of the early studies were either covariance or Monte (arlo
analysis and provided data on expected orbit determination accuracy as a
function of the system configuration and assumed error levels. The general
conclusion that could be drawn from this work was that autonomous navigation
was a viable concept, but that the existing navigation sensors did not yield
sufficient accuracy.

Beginning in the early 70's a broad range of activities was under-
taken by the Air Force. Une of the earliest and possibly the brightest spot
in the entire history of autonomous navigation was the design, inmplementation
and flight test of_an autonomous stationkeeping system on the LES-8/9
Spacecraft.19,16,17,18 Tnese spacecraft were in a 24-hour ecliptic
orbit and the system was desigred tc automatically acquire and maintain the
mean longitude within + 0.15° of the specified value. The system included
all of the components required to determine the actual mean longitude and
then to compute and execute the necessary orbit corrections. The LES-8
spacecraft was placed under active autonomous staticnkeeping control during
the period from 7 July to 4 October 1976. Tne flight results indicate that
the spacecraft acquired and maintained a station at 109.7° W longitude with
an absolute accuracy of 0.06°,18

While the LES-8/9 system was highly simplified and operated
under rather special conditions, it did indeed demonstrate that autonomous
navigation was a viable concept.

*By J. B. Jones
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In parallel with the LES-8/9 flight experiment the AF initiated
four sensor development activities. I8M developed a system which used the
signals from known active radar stations as the basic measurement.lY,20,21
This program proceeded through the critical component development phase and
predicted accuracy levels ranging from 68 meters (1 sigma) for the Molniya 12 hr
orbit to 900 meters for a synchronous orbit.

Honeywell and TRW concentrated on the uevelopment of special
sensors in order to enable unknown landmark navigation. TRW developed
an engineering model of a gimballed tracker which provided tracking of stars
and unknown landmarks.Z22 The system was carried through the lab test phase.
The Honeywell system utilized two body fixsd iilicon matrix phote
detectors to measure the landmark motion.23,2% Tnis system carried the :ensor
assembly through the critical component development phase. Performance cn
the order of 1 km for low altitude orbits was expected,

Martin Marietta is developing the Space Sextant.?1,¢5,26,¢7 This
instrument, which employs two gimballed trackers, is designed to measure
angles between stars and either the lunar limb or Earth landmarks. Perforidnce
is expected to be in the 250 meter range. This development has proceeded
further than the other three and is currently scheduled for a shuttle flight test.

More recently the AF has initiated development by TRW of a charge
coupled device (CCD) Star tracker (the MADAN program).Z8 This versatile
accurate instrument is intended to provide the inartial reference required
by an autonomous navigation system.

With the development of the AF Giobal Positioning System (GPS)
both Aerospace Corp. and NASA have considered using GPS data to support an
autonomors navigation system.29,30,31 NASA in combination with the Navy
has develuped a complete onboard package which has been tested and is
currently being integrated into the Landsat-D Spacecraft. The system will be
treated as an experiment during the mission and is expected to produce accuracy
levels on the orcder of 10 - 20 meters. The estimated orbit wiil be used to
annotate data from other onboard instruments prior to transmission to the
ground.

In addition to these instrument development activities, a number
of system studies have also been recently conducted. The British Aerospace
Corp. conducted & study of 3 completely autonomous stationkeeping system for
a geostationary satellite.3¢ The proposed system utilized Earth, Sun, and
Star sensors to achieve complete contro' over the satellite s%gtion. In 1981
two papers reported on the results of a similar German study. ,34

During this same time period the AF initiated the Autonomous Space-
craft Project (ASP) which included as one component an autonomous navigation
system, with the added requirement of onboard fault detection and correction.
This effort is proceeding towards a preliminary design by the end of FYd82.

Attached is a reasonably complete Reference list of autonomous
navigation studies.
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2.3* DESIGN REQUIREMENTS FOR SUPPURT UF VALIVDATIUN AMD TESTING

The fundamental need to test and validate the proper operation of
an autonomous spacecraft at the system and subsystem levels imposes requirements
on its design. These requirements have been derived from experience with
validation and flight operation of autonomous features and are grouped together
without detailed discussion of the rationale or experience that has generated
them. Provision of a record of autonomous control operation and associated
status data, termed an “"Audit Trail", is a design feature which nhas not yet
been implemented. The complexity of autonomy for the overall spacecraft
system suggests that proviston of an audit trail will be a design requirement
1f the autonomous spacecraft is to be tested or operated with any reasonable
degree of effort.

2.3.1 Validation Requirements on System Uesign

The following requirements way be satisfied by hardware design
features, software implementation, or a combination. Recognition of these
requirements early in the design process is important to allow maximun
flexibility in implementation before it is limited by hardware constraints.

(1) Spacecraft design shall provide for external initiation of
autonomous control routines in a manner consistent with
expected in-flight conditions.

(2) Real time telemetry or stored audit trail data should provide
information relative to cause of entry into 4 routine, action
taken, and the status of the routinesand or resources under
control of the routine.

(3) Self-test capability should be provided to periodically
exercise functions and ensure that recent operational status
information is available. Such self-test operations should
not interfere with nomaal mission operations.

(4) Automatic ‘safe-hold' modes shall be entered only when
autonomous fault recovery criteria indicate that catastrophic
conditions exist which prohibit reconfiguration and resumption
of normal operations.

(5) Fault recovery criteria shall be designed such that
non-catastrophic events permit a fixed number of cycles
through available redundant equipment, in an increasing time
frame, before entering the 'safe-hold’' mode if the repair
action is unsuccessful.

(b) Fault recovery criteria shall be established to limit toggling
among failed elements.

*By H. R. Malm, J. Morecroft & R. Turner
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(7)

(8)

(9)

(1)

(11)

(12)

(13)

(14)

(15)

(16)

Fault management processing shall be accomplished by a single
software module within each subsystem to simplity the location

of fault managemert logic. Error indications shall unambiguously
identify the source of the error to the level of replaceadle
spares.

Flight system uplink and downlink data shall include a time

tag indicating the command execution or data sampling time.

The time tag shall be capable of being easily and unambiguously
converted to Universal Time Constant (UTC). Time tay resolution
should be su®ficient to allow time localization of data as
required by the spacecraft and the ground. txperience indicates
that uplink data time tags should have a miniwum resolution

of 0.1 seconds and downlink data tags should have a minimum
resolution of 0.00]1 seconds.

It shall be possible for ground contrul to inhibit autonomous
functions and the execution of autonomous function output
commands. The output command inhibit shall be automatically
reset.

A self-test or checksum validation shall be performed for al)
command functions prior to event execution.

A1l commands that change the state of hardware or software
operation shall unambiguously command a transition from one
deiined state to ancther. “Toggle" commands which alternately
switch an operating state with repetitive executions of the
same command word shall not be used.

Critical mission states and commands shall be periodically
checkpointed such that fault recovery can roll back to a
known event and re-establish the spacecraft state.

The flight system design shall provide data for alarm
conditions, alert messages, errors detected, and nominal events.

Fixed periodic status messages shall be provided for all
autonomous elements with command generation interfaces.

An unambiguous alert indication is required upon initiation
of any autonowous function.

The mission ground systems shall provide an uplink command
system design using techniques similar to the NASA Command
Standard such as ‘store and forward' and ‘blind commanding'
concepts so that ground controlled validation sequences can
be uplinked rapidly from a primary command station and then
enabled for execution from any available fixed or mobile
command site.
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(17) Interface, cabling, and grounding design are subjected to
close scrutiny to minimize system integration and test
problems. PartiLular emphasis is olaced upon separation of
quiet and notsy circuits, implementation of the single point
grounding tree philosophy, and detailed interface documentation.
An Interface Control Document (ICD) is required for all
element interfaces, in additfon to any other documents bearing
upon those interfaces.

(18) Tne test hardware interface between ground support equipnent
and flight equipment must meet all design, environmental, and
Quality assurance requirements established for equivalent
flight hardware with which the test haraware interfaces.

(19) Where support equipment supplies power to flight systems
and/or 1nterfaces, the power sources must be regulated and
isolated, with voltaye and current limiting to pravent
catastrophic overloads during the test program.

(20) Power and signal grounds are to be isolated in all cases,
with a common connection only at a single point in the ground
tree configuration. Power connections to the spacecraft must
be isolated so that a single fault of any power distribution
1ine to the structure will not result in catastrophic power
conditions.

(21) A1} software modules or routines executing on the same
processor or utilizing a common memory shall be designed
with a special set of rulec or protocols for buffer initial-
1zation and allocation to minimize data overwrite and transfer

problems.
2.3.2 Audit Trail Requirements
2.3.2.1 Information Recordingrand Storage. Test, validation, and flight
operations of autonomous spacecraft require the recording and storage ot status

and comnand inforwation for later analysis. The audit trail must provide
informaticn relative to an event that allows unambiguous determination of the
precursor condition(s) and the function operations, deviations from nominal
performance, or periodic system/subsystem status snapshots. Types of information
for inclusion in the audit trail are:

(1) Time - An unambiguous time must be incorporated in all audit
trail records to show the time of the first measurement of
the first bit in the record. Time information must be easily
converted to UTC and have a resolution of U.0Ul1 seconds.

(2) Latest Available Data (LAD) - The LAV from all sensors and
critical derived measurements must be tabulated in a format
which shows the last data value, the current data value, date
suppression values, and performance criteria values for alarm,
alert, event, and error conditions.
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(3)

(4)

(5)

(6)

(7)

The LAD measurements would be included in the audit trail on
initialization and when data suppression or performance
criteria values are exceeded.

Fixed Periodic Status Data - Nominal operation within the
limits of the LAD criteria is to produce an audit trail record
at a fixed period interval to indicate system and subsystem
status. The record is to summarize system elements as ready
or not ready. Etlements identified as not ready are to include
a count of alarms, alerts, events, and errors detected since
the last fixed periodic status interval.

Alarm Data - Tne violation of an absolute design limit is to
cause immediate generation of a LAD record followed by an
alarm record indicating the last value, the current value,
and the alarm limit value which has been violated. The alarm
record is to be repeated at each measurement sample period
until the violation is corrected.

Alert Data - The violation of an operational limit is to
cause inmediate generation of a LAD record followed by an
alert record indicating the last value, the curren* value and
the alert limit value which has heen exceeded. The alert
record is to be repeated at each measurement's sample period
in which a value change is dstected. Should the weasurewent
sample produce a value which is twice the critical alert
value, the alert record is to be repeated until the violation
iS corrected.

Event Data - An event record is to be generated for a collection
of N events or once every N minutes. This record is to indicate
the last N events, the current event, and the alarm and alert
status sampled at the current event time.

Error Data - The error record is to be a summary of syntax

and processing errors which were detected and automatically
corrected by error correction algorithus. This error record

is to be generated for every M errors and is to show an
unambiguous indication of the error source, the last error

count, the current error count, and the error count criteria value.

2.3.2.2 Implementation Lo?ic Requirements. Uetailed analysis and planning
of the audit trail content w necessary to size the storage device, manaye
the available storage resource, and keep playback time to a reasonable level.
The following requirements may be imposed on implementation logic:

(1)

An unambiguous audit trail shall be provided for all autonowous
functions for the maximum period of unattended operations as
defined in the mission plan.
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(2)

(3)

(4)

(5)

Data compression and record frequency allocation techniques
will be utilized to prevent excessive use of audit trail
storage resources in normal operation.

Storage logic will allow for automatic deferral of non-critical
events data if the storage resource is close to being filled
in autonomous operation.

Technicues to suppress redundant data will be applied to all
audit trail records.

Content and frequency of audit trail data shall pe proyrammable
after launch, and classes of events will be defined so 4s to
be suppressible from inclusion in the audit trail by ground
command or autonomous control action.
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SECTION 3

SUBSYSTEM LEVEL AUTUNOMOUS DESIGN CHARACTERISTICS

This section details the autonomous design characteristics of
generic spacecraft subsystems. The information in this section is necessary
to support architecture and control authority allocation trade-offs between
spacecraft system level and subsystem level rescurces. The subsystem
characteristics presented Wicre are not exhaustive but represent the major
subsystem functions that could require autonomous control to sa.isfy mission
requirements. The material discussed in this section is generic in nature,
and there is not sufficient design detail available to produce an actual
implementation algorithm for the functions described. The intent is to
identify potential autonomous functions and supply enough information to
guide the spacecraft system and subsystem designers in selection of functions
and provide a potential approach for implementation. The designers must
consider their own constraints in the design of an individual implementation
of any specific function. The specific control algorithm examples of Appendices
B and C are to be used together with the generic design topics of Section 2 of
Part 111 to aid the designer in this process.

Each subsystem characterization has three parts. The first
discusses the nature of the subsystem functions and the functional elements
that resuit in hardware implementation. The emphasis is to identify these
items and their control characteristics that may be affected by autonomy.

The second part is titled “Autonomous Maintenance Functions". Potential
welfare maintenance functions are identified and characteristics are described
in tabular form. Scope of the function's impact on the system/subsystem
performance, subassemblies involved, and typical execution frequencies are
listed. A candidate set of input, processing, and output requirements for

a generic approach to implementation is presented. The third part performs

a similar role for autonomous fault management functions. The particular
character.stics listed for identified functions are the functionai fault

type, symptoms, impact and criticality, and a prospective example of the
approach to detecting, isolating, and correcting the fault. Any flight
project experience with protection algorithms for the fault is noted. Solutions
for some faults are represe~ted by example algorithms in Appendices B or C ot
this Handbook, and any that are applicable are referenced.

3.1+ TRACKING, TELEMETR!’AND COMMAND (TT&C) SUBSYSTEM
3.1.1 Functional Description and Elements

The TT4&C provides telecommunication functions for the spacecraft
(S/C). The TT&C functional block diagram is shown in Figure II[-13, This
block diagram shows the three major functions; the Uplink, Tracking, and
Downlink. The Antennas, Antenna Control, Antenna Select, Microwave Lomponents
anc the Control and Monitor are functional elements of the TT&C usec to
accomplish the three key functions. These functions are described below in
terms of functions and the elements which make up the function. The functional
elements are depicted in the block diagram of the figures of this section.
These elements are labeled “A....N" which denote a number of block or
functionally redundant elements.

*8y S. 0, Burks
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3.1.1.1 Uplink Functional Elements. The uplink functional block diagram
is in Figure I1I-14. En RF carrier from a grourd, airborne or spaceborne
source is transmittec .o the satellite. The uplink function typically
tracks the carrier and recovers the information modulated on the carrier.
This information is in the form of commands or tracking data. The uplink
function then stores and/nr issues the commands and conditions the two-way
data for transmission on the downlink function. The elements performing
this function are as follows:

(1) The antenna elements receive the RF signal. These antennas
can be of several types from very broad “"omni" antenras to
narrow beam parabolic reflectcrs. As indicated in the Figure
there can be one or several antennas and antenna types used
to receive the RF signal. (Optical communications will not
be assumed here although techniques similar to RF are used.)

(2) Associated with the steerable antennas could be an electrical
or electro-mechanical pointing system. These steerable
antennas could be directed by automatically tracking the
uplink signal (e.g., mono pulse or conscan), by preprogrammed
pointing, or by using the satellite attitude for pointing.

(3) The antenna select and microwave components provide for
splitting, steering and filtering of the RF signal to the
receiver.

(4) Tre RF head and dswn converter filters the inceming KF
signal and converts it to a lower frequencv.

(5) The IF, tracking and daia cemodulation element provides for
signal amplification and filtering, tracking of the RF
signals, and demcdulation of data from the RF carrier.

(6) The data detection element receives the demodulated <ignal
and strips out the cata (e.g., removes the binary coded
command date from the command subcarrier).

(7) The data handling element decodes the messages in the data
(including decryption); stores some of the information for
later use; issues p.eprogrammed stored commands; issues
commands to the subsystems; and directs or takes direction
for command action relative to autonomous functions. Sorie
of the detected data (e.g., carrier tracking and ranging)
is conditioned for downlink transmission as tracking data.

(8) Th2 data output selector is a buffer system fcr getting

commands and tracking data from the data handling element
to the satellite subsystems.
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(9) The control and monitor element provides for internal TT&C
state changes and data conditioning. This element would be a
key interface with other satellite subsystems, including
autcnomous interface features. This element would contain
the distributed processing unit for the TT&C in a decentralized
approach. The control feature of this element receives
command inputs from the data handling system (initiated fromn
the ground, by on-board storage or by the autonomy function).
The control basically controls the mode and state of the
various uplink funct‘onal elements. It also serves to transfer
TT&C data to other sucsystems, including data needea for
autonomy; provides the interface for sensor data used for
telemetry and fault de:ections; and provides and receives
data to and from other subsystems.

3.1.1.2 Downlink Functional Elements

The downlink functional block diagram is in Figure 111-15. The
functional elements shown in the Figure provide for the transmission of
data to the ground or to other air or space systems. The data, including
autonomy-related data, is received from the satellite subsystems, and is
then stored, conditioned, formatted and transmitted over an RF link. Tne
elements performing this function are as follows:

(1) The Input Selector is basically a data buffer between the
data "sender" and the downlink function. It selects the
data source(s) for use in the data handling system.

(2) The Data Handling element receives the various forms of
analog and digital data. The data is conditioned, formatted
and possibly stored for transmission (e.g., Analog to Uigital
(A to D) conversion, coding, time division multiplexing,
and storing for later transmission).

(3) The Signal Conditioning element receives the data stream
(typically binary coded) and conditions it for modulation
(e.g., modulation on a subcarrier and/or adding to a pseudo
random noise code). The signal conditioner may also
accept the translated uplink signals for two-way tracking.

{4) The Modulatur and RF Driver receive the "conditioned" data
and modulate it onto the RF carrier. The modulation can
take many forms, e.g., amplitude modulation (AM), phase
modulation (PM), frequency modulation (FM), phase shift
keying (PSK), staggered quadraphase phase shift keying
(SQPSK). The RF driver portion typically multiplies up in
frequency the internally or externally Gerived carrier to a
frequency suitable for transmission.
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(5) The Power Amplifier amplifies the RF carrier to a level
suitable for transmission, e.g., Traveling Wave Tube
Amplifier (TWTA), Klystron, gallium arsenide field effect
transistor (GAs FET) Solid State Amplifier (SSA).

{6) The antenna select elements provide for splitting, steering
and filtering of the KF signal(s) to the antennas.

(7) The antenna(s) direct the KF energy to the user. Tnese
antennas could nave various gains and beamwidths, work at
different frequencies and be used in various combinations
depending cn the mission.

(8) With some of the antennas there could be a system for
pointing the antennas electrically or electro-mechanically;
others might be pointed only by satellite positioning
by attitude control.

(9) Tie control and monitor function for the downlink is
essentially as described for the uplink in 3.1.1.1 (Y) above.

3.1.1.3 Tracring Functional Elements. The tracking function processes

a signal used .0 Tocate the satelTite and determine its position and velocity
state. One-way and two-way schemes for uplink and downlink tracking provide
tracking station relative angular position and rate, range, and range rate

in some combination dictated by mission requirements for navigation. The
tracking functional block diagram is in Figure 11I-16.

The elements of the tracking function are:

(1) A data input selector. This element receives various input
signals such as a carrier and ranging signal from a receiver
or multiple receivers.

(¢) The tracking and data conditioner receives the uplink data
(e.g., carrier and/or ranging) for two-way tracking. This
element could also be used to provide a stable frequency
reference source for one-way tracking.

(3) The output selector element provides the various tracking
signals to the downlink transmitter(s).

(4) The control and monitor element for the tracking function
is essentially as described in 3.1.1.1 (Y) above.
3.1.2 Autonomous Maintenance Functions

No required autonomous welfare maintenance functions were
identified for the TT&C subsystem.
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3.1.3 Autonomous Fault Management Function

Fault management functicns for the three TT&C subsystem functional
areas are characterized in Tables I11-9, -10, and -11. The generic faults
selected for characterization may be summarized as element hardware failures,
antenna pointing control failures, and power failures.

Examples of flight-implemented algorithms for loss of uplink command

capability (Viking spacecraft) and loss of downlink raaio frequency capability
(Voyager) are included in Appendix C.
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3.2 PUWER SUBSYSTEM

3.2.1 Functioral Description and Elements

The Power subsystem is responsible for the generation, conditioning,
distribution, and management of electrical power for the spacecraft.
Autonomous design characteristics affect many elements of the subsystem. A
representative set of subsystem elements is:

3.2.1.1 Batteries. Secondary (rechargeable) eneryy storage batteries
require several control functions to provide optimum performance. Depth
of discharge control is an important function because of the direct
relationship between decreasing battery cycle 1ife and increasing depth of
discharge. Depth of discharge is usually determined by calculating the
time integral of discharge current (Ampere-Hours) and reldating this value
to the rated battery capacity (Ampere~-Hours). Temperature control of
batteries is used to achieve maximum energy conversion during both charge
and discharge phases. Periodic reconditioning of Nickel-Ladmium (NiLd)
batteries has been shown to result in the recovery of energy storage
capability which degrades with life and charge-dischiarye cycling.

3.2.1.2 Battery Chargers. Battery charger control is necessary to
prevent excessive overcharge which generates heat in the battery and causes
degradation. In addition to battery over-temperature and maximum voltage
cutoff, charger control may include charge rate at one or more selectable
profiles based on specific battery voltage-temperature characteristics.
Charger on-off is also incorporated to allow isolation of a failed charger.

3.2.1.3 Voltage Regulators. Voltage regulators, series or shunt type,
are usually self-contained functional elements. Shunt regulators contain
sufficient redundancy to achieve required fault tolerance. Fault tclerance
for series regulators is accomplished by incorporating a spare redundant
regulator unit. Regulator control is therefore limited to switching to a
redundant series regulator in the event of a fault.

3.2.1.4 DC-DC Converters. UC-UC converters are usually self-contained
functional elements with rio provisions for external control. Functional
fault tolerance is controlled by standby redundancy switching.

3.2.1.5 DC-AC Inverters. Inverters are also usually self-contained
functional elements without provision for external control. An exception

to this occurs where synchronization of the inverter frequency to an external
reference is required. Control of the inverter frequency in the event of
loss is accomplished by automatic enablement of an internal reference.
Operation would continue in an unsynchronized mode. Fault tolerance of

the inverter is controlled by standby redundancy switching.

*By A. 0. Bridgeforth
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3.2.1.6 Load Power Switching. Load Un/Uff switching is usually performed
within the power subsystem in response to inputs from the spacecraft command sub-
system. Load fault controi can be accomplished by fusing, current limiting

or by activation of the On/Uff switch.

3.2.1.7 Memory-Keep-Alive Power Supply. This type of power supply is used

to supply the uninterrupted voltage required to maintain the state of “volatile”
memory during power tubsystem fault or transient conditions. Active internal
redundancy is required, therefore no external controls are necessary.

3.2.1.8 Urdrance Power Switching Unit. Ordnance power switching is usually
accomplished by a parallel redundant set of safe-arm and fire relays actuated
in response to spacecraft command subsystem inputs.

3.2,2 Autonomous Maintenance Functions

Typical welfare maintenance functions were categorized into the
areas of energy storage maintenance, subsystem performance assurance, load
management, and margin determination. Maintenance functions falling in these
categories are characterized in Table [1l-12,

3.2.3 Autonomous Fault Maintenance

Table III-13 identifies and characterizes a series of faults
that may occur in elements of the Power subsystem. Examples of generic
algorithms to implement a power load fault management function, a failed
battery cell replacement function, and a failed LC-UC converter recovery are
included in Appendix B.
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3.4 ATTITUDE CONTROL SUBSYSTEM

3.3.1 Functional Description and Elements

A three-axis stabilized spacecraft attitude control subsystem (ACS)
typically consists of point source and/or extended body sensors for attituae
reverences, a set of actuators (momentum wheels, thrusters, etc.) to provide
control response, data or signal bus structures for internal information
flow, and a cen'ral control logic authority. The following are typical
elements of these functional subdivisions with implications for autonomous
ACS design.

3.3.1.1 Reaction Wheels. Reaction wheel assemblies require control for
momentum unioading, momentum distribution management (multiple active wheel
assemblies), and fault recovery.

3.3.1.2 sensors. Attitude reference sensors may utilize near bodies (sun,
moon, earth), stellar references, or vehicle body dynamics (gyroscopes).
Control must typically be exerted to calibrate sensors, initialize redundant
sensor assemblies (block or functional), and switch subsystem operating modes
for error recovery.

3.3.1.3 Thrusters. Attitude control thrusters may be considered part of
the propulsion subsystem under control of the ACS. Tnruster selection and
enabling, fuel management, and fault detection and response are typical
control requirements. Responsibility for control of specific functions may
lie with the ACS, propulsion subsystem, or a spacecraft system executive.

3.3.1.4 Computer/Attitude Control Electronics. Programmable loyic resources
for closed loop control of ACS functions may reside in a general purpose
computer or 2 speciaiized logical control subassembly. Such devices must be
commanded to switch logical operating modes for performing attitude control
in changing spacecraft operating modes (reference acquisition, maneuver
execution, normal operations, etc.) and to respond to a wide variety of
internal and external faults thai may impact subsystem operation.

-

3.3.2 Autonomous Maintenance Functions

Attitude control maintenance functions are grouped into areas of
momentum management, operating mode sequencing and configuration, audit trail
maintenance, and evaluation of ACS subassembly performance. These
characterizations are presented in Table I11-14,

By J. Matijevic
111-14%
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The presence of executive control is evident in the discussions of
the selected ACS maintenance functions. These functions often involve deviatin
from normal subsystem operating procedures to, for example, power unused
functional redundant sensors for use in calibrations of on-line equipment.

The decision to perform this procedure naturally involves the executive is a
party, allowing this temporary change to the normal power budget.

The system executive exercises a level of control appropriate to
its function. It monitors, enables and disables ACS activities, but seldom
interacts in a substantial way with ACS equipment. This is shown in the
discussion of the mode sequencing and momentum management functions. In each
case a change in ACS operating mode is invoived. But once enabled, these
fuactions execute logic which determines the optimum time to fire a thruster,
disable a fault protection algorithm or establish the normal or cruise
operating mode. Such real-time control activities are performed best under
ACS control.

3.3.3 Autonomous Fault Management Functions

Table II1-15 presents a number of functions which give some indicati
of the logic in a management scheme for the ACS onboard an autonomous earth
orbiting three-axis-stable spacecraft. Fault management functions are
described which provide protection from a set of generic faults for some
standard devices used on earth orbiting spacecraft. Although the individual
descriptions are tailored to the device in question, the faults considered
and the techniques presented are applicable to a wide range of similar devices.
For example, fault protection schemes are given for high, low and noisy signal
level abnormalities for a star tracker. These same faults affect anry sensor
of the sun, earth or other celestial body. The urgency of response to high
and low signal abnormalities, as in the case of the star tracker, remains a
function of operational mode and use of the sensor for axial control. As
another example, protection from the lack of commandability of momentum
wheels, leading to high or no response by the wheels, can be appiied to a
range of actuators including hot or cold gas thrusters and magnetic torquers.
In the protection scheme outlined for the momentum wheels, closed loop self
tests are performed using the tachometers to check wheel performance. In the
case of thrusters or magnetic torquers, attitude sensors may play the role of
the tachometers and thus measure the performance of the actuator through
structural dynamics and motion effects. Example attitude control algorithms
for a generic Celestial Reference Re-acquisition function aind Celestial
Sensor fault management [Voyager flight algorithm) are included in Appendices
B and C respectively.
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3.4+ PROPULSION SUBSYSTEM

3.400 Functional Description and Elements

Propulsion subsystems for on-orbit applications are primarily
monopropellant hydrazine and earth storable bipropellant, typically
nitrogen tetroxide-monomethy! hydrazine (Mz04-MMH). Discussion of autonomy
as applied to satellite propulsion subsystems will be limited to these two
generic chemical types. Both bi-propellant and monopropellant systems have
been used on recent planetary missions (Viking and Voyager, respectively)
with some autonomy in critical areas on both missions.

3.4.1.1 Propulsion Subsystem Functions. On-orbit propulsion functions
fall into two general categories:

(1) Translation

Stationkeeping and orbit adjust maneuvers requiring large
delta-V's, usually with steady state firings.

(2) Attitude Control

Acquisition and reacquisition of references, attitude re-
orientation, attitude maintenance (e.g. limit cycle pulsing

or reaction wheel unloading) and attitude control during
translation maneuvers. These functions are usually accom-
plished in pulse mode (pulse off in the case of some translation
maneuvers).

The components and subassemblies of satellite propulsion subsystems
are generally not completely redundant because of weight and design consider-
ations; application of autonomy to the propulsion subsystem thus differs in
some respects from application to electronic subsystems. Fault management
approaches must be tailored to the specific configuration and components. In

coping with some faults, degraded operation or alternate operating modes must
be selected in lieu of block replacement of failed elements.

3.4.1.2 Subassembly Grousing. Representative subassembl ies can be grouped
as follows for purposes o scussing options for autonomous operation:
(1) Tanks
(2) Pressurization Components
(a) Reguiators

(b) Relief Valves

By R. W. Rowley
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(3) Interconnecting Plumbing

(a) Lines

(b) Filters

(c) Check Valves

(d) Isolation Valves
(4) Thrusters

(a) Translation

(b) Attitude Control

(5) Transducers

Thrusters and isolation valves are usually redundant at least to
some degree. Components such as regulators and check valves may be redundant,
but components such as tanks, 1ines and filters are conservatively designed
with large safety factors, since redundancy is often impractical.

3.4.2 Autonowous Maintenance Functions

Propulsion subsystem maintenance functions which may have to be
made autonomous for extended periods of unattended satellite operation include
the following:

(1) Propellant Management
(a) Mass Used/Remaining
(b) Center-of-Mass Location
(c) Use Rate/Mission Planning
(2) Configuration Management
(a) Isolation Valve Position Mcnitoring
(b) Thruster Selection
(c) Tank Selecticn

111-165



(3) Navigation

(a) Burn Duration Estimates

(b) Burn Performance Reconstruction
(4) Attitude Control

(a) Impulse Bit Estimates

(b) Impulse Bit Monitoring
(5) Thruster Life Management

(a) Pulse Accumulation

(b) Prcpellant Throughput

Summaries are presented in Table 111-16 of the approaches required
to perform two representative examples of these functions; 1) Propellant
Management, Center-of-Mass Location; and 2) Mavigation, Burn Duration Estimates.

Autonomous performance of these functions has not been required
to date on any spacecraft; the approaches presented are thus derived from

the practices of ground control as they would be incorporated into onboard
software.

3.4.3 Autonomous Fault Management Functions

The general categories of fault types encountered in liquid
propulsion subsystems for satellite use are summarized in Table IlI-17.
The specific faults to be protected against and the fault management approaches
are heavily dependent on the component designs, the propulsion subsystew
configuration, ard the mission requirements.

A degree of autonomous fault protection has been incorporated in
previous planetary spacecraft for the attitude control thrusters (Yiking
Extended Mission and Voyager) and the regulator (Viking). Ouring the Viking
Extended Mission, a routine was also incorporated to terminate the main engine
firing at propellant depletion. Autonomous fault protection can be incorporated
for other components where the design includes redundancy. For example,
isolation valves are usually backed-up such that a failure of any single
valve to open or close can be corrected. However, in many applications, low
probability failure modes cannot be fully protected against (e.g., tank
leakage in single tank systems) and design and test conservatism are used
instead of redundant component switching.

3.4.3.1 Fault Sensing Techniques. Techniques for sensing faults are:

(1) Direct measurement - usually limited to simple pressure,
temperature, and valve position sensors in selected locations.
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Table 111-17

LIQUID PROPULSION SUBASSEMBLY FAULT CATEGORIES

Subassembly Fault Categories {see Note)
Tanks Leak*
- External

- Internal (e.g. Diaphragm)

Pressurization Components Regulator Leakage/
Tank Overpressure

Interconnecting Plumbing Isolation Valve Fail
- Leak or Open
= Close
External Leak*
Filter Clog*

Thrusters Leak/Fail Open
Fail Close/Fail to Uperate

Transducers Faulty Output Signal

Note
Faults marked with an asterisk (*) may not be correctable,
depending on propulsion hardware design.
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(2) Inference - reconstruction of subsystem performance by
comparing expected and actuai parameter changes {(e.g., tank
pressure decrease, attitude control response, etc.

Limitations in sensor technelogy currently force a heavy reliance on iiferential
techniques for propulsion fauic detection during both ground based and
autonomous operation.

3.4.3.2 Autonomous Fault Managg%ent Examples. Sumnaries of two examples
of autonomous fault management techniques are presented in Table II.-18.

(1) Thruster Fault Protection
(2) Regulator Leakage Protection

Autonomous fault protection algorithms used to date on planetary
spacecraft for propulsion related functions are summarized in Part III,
Section 2.1.6. These algorithms were:

(1) Viking - PRSREG - Pressure Regulator Failure

(2) Viking Extended Mission - CORKER - Automatic Leak Clearing,
and ACLMON - Accelerometer Monitor

(3) Voyager - TCA